Why3 Standard Library index


Finite Domain Maps

Polymorphic finite domain maps

To be used in specifications and ghost code only

module Fmap

  use int.Int
  use map.Map
  use set.Fset as S

  type fmap 'k 'v = abstract {
    contents: 'k -> 'v;
      domain: S.fset 'k;
  }
  meta coercion function contents

  predicate (==) (m1 m2: fmap 'k 'v) =
    S.(==) m1.domain m2.domain /\
    forall k. S.mem k m1.domain -> m1[k] = m2[k]

  axiom extensionality:
    forall m1 m2: fmap 'k 'v. m1 == m2 -> m1 = m2

  meta extensionality predicate (==)

  predicate mem (k: 'k) (m: fmap 'k 'v) =
    S.mem k m.domain

  predicate mapsto (k: 'k) (v: 'v) (m: fmap 'k 'v) =
    mem k m /\ m[k] = v

  lemma mem_mapsto:
    forall k: 'k, m: fmap 'k 'v. mem k m -> mapsto k m[k] m

  predicate is_empty (m: fmap 'k 'v) =
    S.is_empty m.domain

  function mk (d: S.fset 'k) (m: 'k -> 'v) : fmap 'k 'v

  axiom mk_domain:
    forall d: S.fset 'k, m: 'k -> 'v. domain (mk d m) = d

  axiom mk_contents:
    forall d: S.fset 'k, m: 'k -> 'v, k: 'k.
    S.mem k d -> (mk d m)[k] = m[k]

  constant empty: fmap 'k 'v

  axiom is_empty_empty: is_empty (empty: fmap 'k 'v)

  function add (k: 'k) (v: 'v) (m: fmap 'k 'v) : fmap 'k 'v

  function ([<-]) (m: fmap 'k 'v) (k: 'k) (v: 'v) : fmap 'k 'v =
    add k v m

  axiom add_contents_k:
    forall k v, m: fmap 'k 'v. (add k v m)[k] = v

  axiom add_contents_other:
    forall k v, m: fmap 'k 'v, k1. mem k1 m -> k1 <> k -> (add k v m)[k1] = m[k1]

  axiom add_domain:
    forall k v, m: fmap 'k 'v. (add k v m).domain = S.add k m.domain

  function find (k: 'k) (m: fmap 'k 'v) : 'v

  axiom find_def:
    forall k, m: fmap 'k 'v. mem k m -> find k m = m[k]

  function remove (k: 'k) (m: fmap 'k 'v) : fmap 'k 'v

  axiom remove_contents:
    forall k, m: fmap 'k 'v, k1. mem k1 m -> k1 <> k -> (remove k m)[k1] = m[k1]

  axiom remove_domain:
    forall k, m: fmap 'k 'v. (remove k m).domain = S.remove k m.domain

  function size (m: fmap 'k 'v) : int =
    S.cardinal m.domain

end

Some additional fmap operators and their properties

Mainly inspired from set theory a la B

module Fmap_ext

use map.Map
use set.Fset as S
use export Fmap

function dom (m: fmap 'k 'v) : S.fset 'k = m.domain

An abbreviation for the domain

function apply (m: fmap 'k 'v) (x: 'k): 'v

map application

axiom apply_result:
  forall m: fmap 'k 'v, x.  mem x m -> mapsto x (apply m x) m
meta "remove_unused:dependency" axiom apply_result, function apply

function remove_set (s: S.fset 'k) (m: fmap 'k 'v) : fmap 'k 'v

domain anti-restriction, <<| in B

axiom remove_set_contents:
  forall m: fmap 'k 'v, s: S.fset 'k, x. mem x m -> not(S.mem x s) -> (remove_set s m)[x] = m[x]
meta "remove_unused:dependency" axiom remove_set_contents, function remove_set

axiom remove_set_domain:
  forall m: fmap 'k 'v, s: S.fset 'k. (remove_set s m).domain = S.diff m.domain s
meta "remove_unused:dependency" axiom remove_set_domain, function remove_set

function domain_res (s: S.fset 'k) (m: fmap 'k 'v) : fmap 'k 'v

domain restriction, <| in B

axiom domain_res_contents:
  forall m: fmap 'k 'v, s: S.fset 'k, x.
    mem x m -> S.mem x s -> (domain_res s m)[x] = m[x]
meta "remove_unused:dependency" axiom domain_res_contents, function domain_res

axiom domain_res_domain:
    forall m: fmap 'k 'v, s: S.fset 'k. (domain_res s m).domain = S.inter m.domain s
meta "remove_unused:dependency" axiom domain_res_domain, function domain_res

function override (m1 m2: fmap 'k 'v) : fmap 'k 'v

map override, <+ in B

axiom override_contents_1:
  forall m1, m2: fmap 'k 'v, x. S.mem x m2.domain -> (override m1 m2)[x] = m2[x]
meta "remove_unused:dependency" axiom override_contents_1, function override

axiom override_contents_2:
  forall m1, m2: fmap 'k 'v, x.
    S.mem x (S.diff m1.domain m2.domain) -> (override m1 m2)[x] = m1[x]
meta "remove_unused:dependency" axiom override_contents_2, function override

axiom override_domain:
    forall m1, m2: fmap 'k 'v. (override m1 m2).domain = S.union m1.domain m2.domain
meta "remove_unused:dependency" axiom override_domain, function override

end

Some additional facts about operators above

They are automatically proven, see session examples/stdlib/fmap

module Fmap_ext_facts

use set.Fset as S
use Fmap_ext

lemma anti_res_1 :
  forall u :  S.fset 'k , m :  fmap 'k 'v.
    S.inter m.domain u = S.empty -> remove_set u m == m
meta "remove_unused:dependency" lemma anti_res_1, function remove_set

lemma anti_res_2 :
  forall u :  S.fset 'k , m :  fmap 'k 'v.
    S.subset m.domain u -> remove_set u m == empty
meta "remove_unused:dependency" lemma anti_res_2, function remove_set

lemma anti_res_3 :
  forall m :  fmap 'k 'v. remove_set m.domain m == empty
meta "remove_unused:dependency" lemma anti_res_3, function remove_set

lemma anti_res_4 :
  forall m :  fmap 'k 'v. remove_set S.empty m == m
meta "remove_unused:dependency" lemma anti_res_4, function remove_set

lemma anti_res_res :
  forall u, v :  S.fset 'k , m :  fmap 'k 'v.
    remove_set u (domain_res v m) == domain_res (S.diff v u) m
meta "remove_unused:dependency" lemma anti_res_res, function remove_set

lemma anti_res_anti_res :
  forall u, v :  S.fset 'k , m :  fmap 'k 'v.
    remove_set u (remove_set v m) == remove_set (S.union v u) m
meta "remove_unused:dependency" lemma anti_res_anti_res, function remove_set

lemma anti_res_override_res :
  forall u, m1, m2 :  fmap 'k 'v.
    remove_set u (override m1 m2) == override (remove_set u m1)  (remove_set u m2)
meta "remove_unused:dependency" lemma anti_res_override_res, function remove_set
meta "remove_unused:dependency" lemma anti_res_override_res, function override

lemma remove_remove_set :
  forall x :  'k , m :  fmap 'k 'v.
    remove x m == remove_set (S.singleton x) m
meta "remove_unused:dependency" lemma remove_remove_set, function remove_set

lemma add_override :
  forall x:  'k , y: 'v, m :  fmap 'k 'v.
    add x y m == override m (mk (S.singleton x) (fun _ -> y))
meta "remove_unused:dependency" lemma add_override, function override

end

Finite monomorphic maps to be used in programs only

A program function eq deciding equality on the key type must be provided when cloned.

Applicative maps

module MapApp

  use int.Int
  use map.Map
  use export Fmap

  type key

  (* we enforce type `key` to have a decidable equality
     by requiring the following function *)
  val eq (x y: key) : bool
    ensures { result <-> x = y }

  type t 'v = abstract {
    to_fmap: fmap key 'v;
  }
  meta coercion function to_fmap

  val create () : t 'v
    ensures { result.to_fmap = empty }

  val mem (k: key) (m: t 'v) : bool
    ensures { result <-> mem k m }

  val is_empty (m: t 'v) : bool
    ensures { result <-> is_empty m }

  val add (k: key) (v: 'v) (m: t 'v) : t 'v
    ensures { result = add k v m }

  val find (k: key) (m: t 'v) : 'v
    requires { mem k m }
    ensures  { result = m[k] }
    ensures  { result = find k m }

  use ocaml.Exceptions

  val find_exn (k: key) (m: t 'v) : 'v
    ensures { S.mem k m.domain }
    ensures { result = m[k] }
    raises  { Not_found ->  not (S.mem k m.domain) }

  val remove (k: key) (m: t 'v) : t 'v
    ensures { result = remove k m }

  val size (m: t 'v) : int
    ensures { result = size m }

end

Applicative maps of integers

module MapAppInt

  use int.Int

  clone export MapApp with type key = int, val eq = Int.(=)

end

Imperative maps

module MapImp

  use int.Int
  use map.Map
  use export Fmap

  type key

  val eq (x y: key) : bool
    ensures { result <-> x = y }

  type t 'v = abstract {
    mutable to_fmap: fmap key 'v;
  }
  meta coercion function to_fmap

  val create () : t 'v
    ensures { result.to_fmap = empty }

  val mem (k: key) (m: t 'v) : bool
    ensures { result <-> mem k m }

  val is_empty (m: t 'v) : bool
    ensures { result <-> is_empty m }

  val add (k: key) (v: 'v) (m: t 'v) : unit
    writes  { m }
    ensures { m = add k v (old m) }

  val find (k: key) (m: t 'v) : 'v
    requires { mem k m }
    ensures  { result = m[k] }
    ensures  { result = find k m }

  use ocaml.Exceptions

  val find_exn (k: key) (m: t 'v) : 'v
    ensures { S.mem k m.domain }
    ensures { result = m[k] }
    raises  { Not_found ->  not (S.mem k m.domain) }

  val remove (k: key) (m: t 'v) : unit
    writes  { m }
    ensures { m = remove k (old m) }

  val size (m: t 'v) : int
    ensures { result = size m }

  val clear (m: t 'v) : unit
    writes  { m }
    ensures { m = empty }

end

Imperative maps of integers

module MapImpInt

  use int.Int

  clone export MapImp with type key = int, val eq = Int.(=)

end

Generated by why3doc 1.8.0