Why3 Standard Library index
This module implements the idea described in this paper: How to avoid proving the absence of integer overflows
When extracted to OCaml, the following type Peano.t
will be mapped to
OCaml's type int
(63-bit signed integers).
See also mach.onetime
.
module Peano use int.Int type t = abstract { v: int } meta coercion function v val to_int (x: t) : int ensures { result = x.v } val constant zero : t ensures { result.v = 0 } val constant one : t ensures { result.v = 1 } val succ (x: t) : t ensures { result.v = x.v + 1 } val pred (x: t) : t ensures { result.v = x.v - 1 } val lt (x y: t) : bool ensures { result <-> x.v < y.v } val le (x y: t) : bool ensures { result <-> x.v <= y.v } val gt (x y: t) : bool ensures { result <-> x.v > y.v } val ge (x y: t) : bool ensures { result <-> x.v >= y.v } val eq (x y: t) : bool ensures { result <-> x.v = y.v } val ne (x y: t) : bool ensures { result <-> x.v <> y.v } val neg (x: t) : t ensures { result.v = - x.v } val abs (x: t) : t ensures { result.v = if x.v >= 0 then x.v else - x.v } val add (x y: t) (low high: t) : t requires { low.v <= x.v + y.v <= high.v } ensures { result.v = x.v + y.v } val sub (x y: t) (low high: t) : t requires { low.v <= x.v - y.v <= high.v } ensures { result.v = x.v - y.v } val mul (x y: t) (low high: t) : t requires { low.v <= x.v * y.v <= high.v } ensures { result.v = x.v * y.v } val of_int (x: int) (low high: t) : t requires { low.v <= x <= high.v } ensures { result.v = x } (* FIXME could replace low.v by - max (abs low) (abs high) high.v by max (abs low) (abs high) avoid the computation of the bounds e.g. addition of two values of different signs *) end module ComputerDivision use int.Int use int.ComputerDivision use Peano val div (x y: t) : t requires { y.v <> 0 } ensures { result.v = div x.v y.v } val mod (x y: t) : t requires { y.v <> 0 } ensures { result.v = mod x.v y.v } end module MinMax use int.Int use int.MinMax use Peano val max (x y: t) : t ensures { result.v = max x.v y.v } val min (x y: t) : t ensures { result.v = min x.v y.v } end module Int63 use int.Int use mach.int.Int63 use Peano val defensive_to_int63 (x:t) : int63 requires { Int63.in_bounds x.v } ensures { result = x.v } val partial to_int63 (x:t) : int63 ensures { result = x.v } val of_int63 (x:int63) (low high: t) : t requires { low.v <= x <= high.v } ensures { result.v = x } end
Generated by why3doc 1.8.0