Why3 Standard Library index


Unbounded floating-point numbers

See also this report

module UFloat
  use real.RealInfix
  use real.FromInt
  use real.Abs
  use ieee_float.RoundingMode

  type t

  val function uround mode real : t
  val function to_real t : real
  val function of_int int : t
  axiom to_real_of_int : forall x [of_int x]. to_real (of_int x) = from_int x

  val function uzero : t
  axiom uzero_spec : to_real uzero = 0.0

  val function uone : t
  axiom uone_spec : to_real uone = 1.0

  val function utwo : t
  axiom utwo_spec : to_real utwo = 2.0

  constant eps:real
  constant eta:real
  axiom eps_bounds : 0. <. eps <. 1.
  axiom eta_bounds : 0. <. eta <. 1.

  (* To avoid "inline_trivial" to break the forward_propagation strategy *)
  meta "inline:no" function eps
  meta "inline:no" function eta

  let function uadd (x y:t) : t
    (* TODO: Do we want the two first assertions in our context ?
      We only use them to prove the addition lemma *)
    ensures { abs (to_real result -. (to_real x +. to_real y)) <=. abs (to_real x) }
    ensures { abs (to_real result -. (to_real x +. to_real y)) <=. abs (to_real y) }
    ensures {
      abs (to_real result -. (to_real x +. to_real y))
      <=. abs (to_real x +. to_real y) *. eps
    }
  = uround RNE (to_real x +. to_real y)

  let function usub (x y:t) : t
    (* TODO: Do we want the two first assertions in our context ?
      We only use them to prove the addition lemma *)
    ensures { abs (to_real result -. (to_real x -. to_real y)) <=. abs (to_real x) }
    ensures { abs (to_real result -. (to_real x -. to_real y)) <=. abs (to_real y) }
    ensures {
      abs (to_real result -. (to_real x -. to_real y))
      <=. abs (to_real x -. to_real y) *. eps
    }
  = uround RNE (to_real x -. to_real y)

  let function umul (x y:t) : t
    ensures {
      abs (to_real result -. (to_real x *. to_real y))
        <=. abs (to_real x *. to_real y) *. eps +. eta
    }
  = uround RNE (to_real x *. to_real y)

  let function udiv (x y:t) : t
    requires { to_real y <> 0. }
    ensures {
      abs (to_real result -. (to_real x /. to_real y))
        <=. abs (to_real x /. to_real y) *. eps +. eta
    }
  = uround RNE (to_real x /. to_real y)

  let function uminus (x:t) : t
    ensures { to_real result = -. (to_real x) }
  = uround RNE (-. (to_real x))

  predicate is_exact (uop : t -> t -> t) (x y :t)

  (* Exact division but can still underflow, giving eta as error *)
  let function udiv_exact (x y:t) : t
    requires { to_real y <> 0. }
    requires { is_exact udiv x y }
    ensures { abs (to_real result -. (to_real x /. to_real y)) <=. eta }
  = uround RNE (to_real x /. to_real y)

  let function ( ++. ) (x:t) (y:t) : t = uadd x y
  let function ( --. ) (x:t) (y:t) : t = usub x y
  let function ( **. ) (x:t) (y:t) : t = umul x y
  (* Why3 doesn't support abbreviations so we need to add the requires *)
  let function ( //. ) (x:t) (y:t) : t
    requires { to_real y <> 0. }
  = udiv x y
  let function ( --._ ) (x:t) : t = uminus x
  let function ( ///. ) (x:t) (y:t) : t
    requires { to_real y <> 0. }
    requires { is_exact udiv x y }
  = udiv_exact x y

Infix operators

  (* Some constants *)
  constant u0:t
  axiom to_real_u0 : to_real u0 = 0.0
  constant u1:t
  axiom to_real_u1 : to_real u1 = 1.0
  constant u2:t
  axiom to_real_u2 : to_real u2 = 2.0
  constant u4:t
  axiom to_real_u4 : to_real u4 = 4.0
  constant u8:t
  axiom to_real_u8 : to_real u8 = 8.0
  constant u16:t
  axiom to_real_u16 : to_real u16 = 16.0
  constant u32:t
  axiom to_real_u32 : to_real u32 = 32.0
  constant u64:t
  axiom to_real_u64 : to_real u64 = 64.0
  constant u128:t
  axiom to_real_u128 : to_real u128 = 128.0
  constant u256:t
  axiom to_real_u256 : to_real u256 = 256.0
  constant u512:t
  axiom to_real_u512 : to_real u512 = 512.0
  constant u1024:t
  axiom to_real_u1024 : to_real u1024 = 1024.0
  constant u2048:t
  axiom to_real_u2048 : to_real u2048 = 2048.0
  constant u4096:t
  axiom to_real_u4096 : to_real u4096 = 4096.0
  constant u8192:t
  axiom to_real_u8192 : to_real u8192 = 8192.0
  constant u16384:t
  axiom to_real_u16384 : to_real u16384 = 16384.0
  constant u32768:t
  axiom to_real_u32768 : to_real u32768 = 32768.0
  constant u65536:t
  axiom to_real_u65536 : to_real u65536 = 65536.0

  predicate is_positive_power_of_2 (x:t) =
    x = u1 \/ x = u2 || x = u4 || x = u8 || x = u16 || x = u32 || x = u64
    || x = u128 \/ x = u256 || x = u4096 || x = u8192 || x = u16384 || x = u32768
    || x = u65536

  axiom div_by_positive_power_of_2_is_exact :
    forall x y. is_positive_power_of_2 y -> is_exact udiv x y
end

module USingle
  use real.RealInfix

Single-precision unbounded floats

  type usingle

  constant eps:real = 0x1p-24 /. (1. +. 0x1p-24)
  constant eta:real = 0x1p-150

  clone export UFloat with
    type t = usingle,
    constant eps = eps,
    constant eta = eta,
    axiom.
end

module UDouble
  use real.RealInfix
  type udouble

Double-precision unbounded floats

  constant eps:real = 0x1p-53 /. (1. +. 0x1p-53)
  constant eta:real = 0x1p-1075

  clone export UFloat with
    type t = udouble,
    constant eps = eps,
    constant eta = eta,
    axiom.
end

(* Helper lemmas to help the proof of propagation lemmas *)
module HelperLemmas
  use real.RealInfix
  use real.Abs

  let ghost div_order_compat (x y z:real)
    requires { x <=. y }
    requires { 0. <. z }
    ensures { x /. z <=. y /. z }
    = ()

  let ghost div_order_compat2 (x y z:real)
    requires { x <=. y }
    requires { 0. >. z }
    ensures { y /. z <=. x /. z }
    = ()

  let ghost mult_err (x x_exact x_factor x_rel x_abs y:real)
    requires { 0. <=. x_rel }
    requires { 0. <=. x_abs }
    requires { abs x_exact <=. x_factor }
    requires { abs (x -. x_exact) <=. x_rel *. x_factor +. x_abs }
    ensures { abs (x *. y -. x_exact *. y) <=. x_rel *. abs (x_factor *. y) +. x_abs *. abs y }
  =
  assert {
    y >=. 0. ->
    abs (x *. y -. x_exact *. y) <=. abs (x_rel *. x_factor *. y) +. x_abs *. abs y
    by
      (x_exact -. x_rel *. x_factor -. x_abs) *. y <=. x *. y <=. (x_exact +. x_rel *. x_factor +. x_abs) *. y
  };
  assert {
    y <. 0. ->
    abs (x *. y -. x_exact *. y) <=. abs (x_rel *. x_factor *. y) +. x_abs *. abs y
    by
      (x_exact +. x_rel *. x_factor +. x_abs) *. y <=. x *. y <=. (x_exact -. x_rel *. x_factor -. x_abs) *. y
  }

  let ghost mult_err_combine (x x_exact x_factor x_rel x_abs y exact_y y_factor y_rel y_abs:real)
    requires { 0. <=. x_rel }
    requires { 0. <=. y_rel }
    requires { 0. <=. x_abs }
    requires { 0. <=. y_abs }
    requires { abs x_exact <=. x_factor }
    requires { abs exact_y <=. y_factor }
    requires { abs (x -. x_exact) <=. x_rel *. x_factor +. x_abs }
    requires { abs (y -. exact_y) <=. y_rel *. y_factor +. y_abs }
    ensures {
      abs (x *. y -. x_exact *. exact_y)
      <=. (x_rel +. y_rel +. x_rel *. y_rel) *. (x_factor *. y_factor)
        +. (y_abs +. y_abs *. x_rel) *. x_factor
        +. (x_abs +. x_abs *. y_rel) *. y_factor
        +. x_abs *. y_abs
    }
  =
  mult_err x x_exact x_factor x_rel x_abs y;
  mult_err y exact_y y_factor y_rel y_abs x_exact;
  mult_err y exact_y y_factor y_rel y_abs x_factor;
  assert {
    abs (x *. y -. x_exact *. exact_y) <=. (y_rel *. x_factor *. y_factor) +. (y_abs *. x_factor) +. (x_rel *. abs (x_factor *. y)) +. x_abs *. abs y
  };
  assert {
    abs (x *. y -. x_exact *. exact_y) <=. (y_rel *. x_factor *. y_factor) +. (x_rel *. (x_factor *. y_factor *. (1. +. y_rel) +. x_factor *. y_abs)) +. y_abs *. x_factor +. x_abs *. abs y
    by
      abs (x_factor *. y) <=. x_factor *. y_factor *. (1. +. y_rel) +. x_factor *. y_abs
  };
  assert {
    x_abs *. abs y <=. x_abs *. (y_factor *. (1. +. y_rel) +. y_abs)
  }

  use real.ExpLog

  let ghost exp_approx_err (x x_approx x_factor a b :real)
    requires { abs (x_approx -. x) <=. x_factor *. a +. b }
    requires { x <=. x_factor }
    ensures {
      abs (exp(x_approx) -. exp(x)) <=. exp(x) *. (exp(a *. x_factor +. b) -. 1.)
    }
  =
  assert {
    exp(x_approx) <=. exp(x) +. exp(x) *. (exp(a *. x_factor +. b) -. 1.)
    by
      exp (x_approx) <=. exp(x) *. exp (a *. x_factor +. b)
  };
  assert {
    exp(x_approx) >=. exp(x) -. exp(x) *. (exp(a *. x_factor +. b) -. 1.)
    by
      exp (x_approx) >=. exp(x) *. exp (-. a *. x_factor -. b)
    so
      exp(x_approx) -. exp(x) >=. exp(x) *. (exp (-. a *. x_factor -. b) -. 1.)
    so
      exp(a *. x_factor +. b) +. exp(-.a *. x_factor -. b) >=. 2.
    so
      -. exp(a *. x_factor +. b) +. 1. <=. exp(-.a *. x_factor -. b) -. 1.
    so
      exp(x) *. ((-. exp(a *. x_factor +. b)) +. 1.) <=. exp(x) *. (exp(-. a *. x_factor -. b) -. 1.)
    so
      -. exp(x) *. (exp(a *. x_factor +. b) -. 1.) <=. exp(x) *. (exp(-. a *. x_factor -. b) -. 1.)
  }

  let lemma log_1_minus_x (x:real)
    requires { 0. <=. abs x <. 1. }
    ensures { log (1. +. x) <=. -. log (1. -. x) }
  =
    assert { 1. +. x <=. 1. /. (1. -. x) };
    assert { forall x y z. 0. <=. x -> 0. <. y -> 0. <=. z -> x *. y <=. z -> x <=. z /. y };
    assert { exp (-.log (1. -. x)) = 1. /. (1. -. x) }

  let lemma log2_1_minus_x (x:real)
    requires { 0. <=. abs x <. 1. }
    ensures { log2 (1. +. x) <=. -. log2 (1. -. x) }
  =
  div_order_compat (log (1. +. x)) (-. log (1. -. x)) (log 2.);
  log_1_minus_x x

  let lemma log10_1_minus_x (x:real)
    requires { 0. <=. abs x <. 1. }
    ensures { log10 (1. +. x) <=. -. log10 (1. -. x) }
  =
  div_order_compat (log (1. +. x)) (-. log (1. -. x)) (log 10.);
  log_1_minus_x x

  let ghost log_approx_err (x x_approx x_factor a b :real)
    requires { abs (x_approx -. x) <=. x_factor *. a +. b }
    requires { 0. <. (x -. a *. x_factor -. b) }
    requires { 0. <. x <=. x_factor }
    ensures {
      abs (log x_approx -. log x) <=. -. log(1. -. ((a *. x_factor +. b) /. x))
    }
  =
    assert { a *. x_factor +. b  = x *. ((a *. x_factor +. b) /. x) };
    assert {
      log (x *. (1. -. (a *. x_factor +. b) /. x))
      <=. log x_approx
      <=. log (x *. (1. +. (a *. x_factor +. b) /.x))
      by
        0. <.  (x -. (a *. x_factor +. b)) <=. x_approx
    };
    log_1_minus_x ((a *. x_factor +. b) /. x)

  let ghost log2_approx_err (x x_approx x_factor a b :real)
    requires { abs (x_approx -. x) <=. x_factor *. a +. b }
    requires { 0. <. (x -. a *. x_factor -. b) }
    requires { 0. <. x <=. x_factor }
    ensures {
      abs (log2 x_approx -. log2 x) <=. -. log2(1. -. ((a *. x_factor +. b) /. x))
    }
  =
    assert { a *. x_factor +. b  = x *. ((a *. x_factor +. b) /. x) };
    assert {
      log2 (x *. (1. -. (a *. x_factor +. b) /. x))
      <=. log2 x_approx
      <=. log2 (x *. (1. +. (a *. x_factor +. b) /.x))
      by
        0. <.  (x -. (a *. x_factor +. b)) <=. x_approx
    };
    log2_1_minus_x ((a *. x_factor +. b) /. x)

  let ghost log10_approx_err (x x_approx x_factor a b :real)
    requires { abs (x_approx -. x) <=. x_factor *. a +. b }
    requires { 0. <. (x -. a *. x_factor -. b) }
    requires { 0. <. x <=. x_factor }
    ensures {
      abs (log10 x_approx -. log10 x) <=. -. log10(1. -. ((a *. x_factor +. b) /. x))
    }
  =
    assert { a *. x_factor +. b  = x *. ((a *. x_factor +. b) /. x) };
    assert {
      log10 (x *. (1. -. (a *. x_factor +. b) /. x))
      <=. log10 x_approx
      <=. log10 (x *. (1. +. (a *. x_factor +. b) /.x))
      by
        0. <.  (x -. (a *. x_factor +. b)) <=. x_approx
    };
    log10_1_minus_x ((a *. x_factor +. b) /. x)

  use real.Trigonometry

  lemma sin_of_approx : forall x y. abs (sin x -. sin y) <=. abs (x -. y)
  lemma cos_of_approx : forall x y. abs (cos x -. cos y) <=. abs (x -. y)

  use real.Sum
  use int.Int
  use real.FromInt

  let rec ghost sum_approx_err (fi_rel fi_abs:real) (f f_exact f_factor : int -> real) (a b:int)
    requires { a <= b }
    requires { forall i. a <= i < b -> abs (f i -. f_exact i) <=. f_factor i *. fi_rel +. fi_abs }
    variant { b - a }
    ensures { abs (sum f a b -. sum f_exact a b) <=. fi_rel *. sum f_factor a b +. fi_abs *. from_int (b-a) }
  =
  if (a < b) then
    begin
      sum_approx_err fi_rel fi_abs f f_exact f_factor a (b - 1)
    end

end

module USingleLemmas
  use real.RealInfix
  use real.FromInt
  use real.Abs
  use USingle

Single propagation lemmas

  let lemma uadd_single_error_propagation (x_f y_f r: usingle) (x x_factor x_rel x_abs y y_factor y_rel y_abs : real)
    requires {
      abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs
    }
    requires {
      abs (to_real y_f -. y) <=. y_rel *. y_factor +. y_abs
    }
    requires { abs x <=. x_factor }
    requires { abs y <=. y_factor }
    (* TODO: Use (0 <=. x_rel \/ (x_factor = 0 /\ x_abs = 0)), same for y. *)
    requires { 0. <=. x_rel }
    requires { 0. <=. y_rel }
    requires { 0. <=. x_abs }
    requires { 0. <=. y_abs }
    requires { r = (x_f ++. y_f) }
    ensures {
      abs (to_real r -. (x +. y)) <=.
      (x_rel +. y_rel +. eps) *. (x_factor +. y_factor)
          +. ((1. +. eps +. y_rel) *. x_abs +. (1. +. eps +. x_rel) *. y_abs)
    }
  =
  let ghost delta = abs (to_real (x_f ++. y_f) -. (to_real x_f +. to_real y_f)) in
  assert {
    0. <=. x_rel /\ 0. <=. y_rel ->
    delta <=.
      (eps +. y_rel) *. x_factor +. (eps +. x_rel) *. y_factor
      +. (x_rel +. eps) *. y_abs +. (y_rel +. eps) *. x_abs
    by
      (delta <=. x_factor *. x_rel +. x_abs +. x_factor
      so
        x_factor +. x_abs <=. eps *. (y_factor +. y_abs) ->
        delta <=. (eps +. x_rel) *. y_factor
        +. (eps +. y_rel) *. x_factor
        +. (y_rel +. eps) *. x_abs +. (x_rel +. eps) *. y_abs
      by
        delta <=. eps *. (y_factor +. y_abs) *. x_rel
              +. (eps *. (y_factor +. y_abs)))
      /\
      (delta <=. y_factor *. y_rel +. y_abs +. y_factor
      so
      abs y_factor +. y_abs <=. eps *. (x_factor +. x_abs) ->
      delta <=. (eps +. y_rel) *. x_factor
        +. (eps +. x_rel) *. y_factor
        +. (x_rel +. eps) *. y_abs +. (y_rel +. eps) *. x_abs
      by
        delta <=. eps *. (x_factor +. x_abs) *. y_rel
              +. (eps *. (x_factor +. x_abs)))
      /\
      (
       (eps *. (x_factor +. x_abs) <. abs y_factor +. y_abs /\
       eps *. (y_factor +. y_abs) <. abs x_factor +. x_abs) ->
       (delta <=.
       (eps +. y_rel) *. x_factor +. (eps +. x_rel) *. y_factor
      +. (x_rel +. eps) *. y_abs +. (y_rel +. eps) *. x_abs
      by
        abs (to_real x_f +. to_real y_f) <=.
        abs (to_real x_f -. x) +. x_factor +. (abs (to_real y_f -. y) +. y_factor)
      so
        x_factor *. x_rel <=. (y_factor +. y_abs) /. eps *. x_rel /\
        y_factor *. y_rel <=. (x_factor +. x_abs) /. eps *. y_rel))
  }

  let lemma usub_single_error_propagation (x_f y_f r : usingle) (x x_factor x_rel x_abs y y_factor y_rel y_abs : real)
    requires {
      abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs
    }
    requires {
      abs (to_real y_f -. y) <=. y_rel *. y_factor +. y_abs
    }
    requires { abs x <=. x_factor }
    requires { abs y <=. y_factor }
    requires { 0. <=. x_abs }
    requires { 0. <=. y_abs }
    requires { 0. <=. x_rel }
    requires { 0. <=. y_rel }
    requires { r = x_f --. y_f }
    ensures {
      abs (to_real r -. (x -. y))
      <=. (x_rel +. y_rel +. eps) *. (x_factor +. y_factor)
          +. ((1. +. eps +. y_rel) *. x_abs +. (1. +. eps +. x_rel) *. y_abs)
    }
  = uadd_single_error_propagation x_f (--. y_f) r x x_factor x_rel x_abs (-. y) y_factor y_rel y_abs

  use HelperLemmas

  let lemma umul_single_error_propagation (x_f y_f r : usingle) (x x_factor x_rel x_abs y y_factor y_rel y_abs : real)
    requires {
      abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs
    }
    requires {
      abs (to_real y_f -. y) <=. y_rel *. y_factor +. y_abs
    }
    requires { abs x <=. x_factor }
    requires { abs y <=. y_factor }
    requires { 0. <=. x_rel }
    requires { 0. <=. y_rel }
    requires { 0. <=. x_abs }
    requires { 0. <=. y_abs }
    requires { r = x_f **. y_f }
    ensures {
      abs (to_real r -. (x *. y)) <=.
        (eps +. (x_rel +. y_rel +. x_rel *. y_rel) *. (1. +. eps)) *. (x_factor *. y_factor)
        +. (((y_abs +. y_abs *. x_rel) *. x_factor
        +. (x_abs +. x_abs *. y_rel) *. y_factor
        +. x_abs *. y_abs) *. (1. +. eps) +. eta)
    }
  =
  assert {
    to_real x_f *. to_real y_f -. abs (to_real x_f *. to_real y_f) *. eps -. eta
    <=. to_real (x_f **. y_f)
    <=. to_real x_f *. to_real y_f +. abs (to_real x_f *. to_real y_f) *. eps +. eta
  };
    assert { abs (x *. y) <=. x_factor *. y_factor by
       abs x *. abs y <=. x_factor *. abs y = abs y *. x_factor <=. y_factor *. x_factor };
  mult_err_combine (to_real x_f) x x_factor x_rel x_abs (to_real y_f) y y_factor y_rel y_abs

  use real.ExpLog

  let lemma log_single_error_propagation (logx_f x_f : usingle)
        (x_exact x_factor log_rel log_abs x_rel x_abs : real)
    requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
    requires {
      abs (to_real logx_f -. log(to_real x_f))
       <=. log_rel *. abs (log (to_real x_f)) +. log_abs
    }
    requires { 0. <. x_exact <=. x_factor }
    requires { 0. <. (x_exact -. x_rel *. x_factor -. x_abs) }
    requires { 0. <=. log_rel }
    ensures {
      abs (to_real logx_f -. log (x_exact))
        <=. log_rel *. abs (log (x_exact)) +.
          (-. log (1. -. ((x_rel *. x_factor +. x_abs) /. x_exact)) *. (1. +. log_rel)
          +. log_abs)
    }
  =
  log_approx_err x_exact (to_real x_f) x_factor x_rel x_abs;
  assert {
   abs (log (to_real x_f)) *. log_rel
    <=. (abs (log (x_exact)) -. log (1.0 -. (((x_rel *. x_factor) +. x_abs) /. x_exact))) *. log_rel
  }

  let lemma log2_single_error_propagation (log2x_f x_f : usingle)
        (x_exact x_factor log_rel log_abs x_rel x_abs : real)
    requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
    requires {
      abs (to_real log2x_f -. log2(to_real x_f))
       <=. log_rel *. abs (log2 (to_real x_f)) +. log_abs
    }
    requires { 0. <. x_exact <=. x_factor }
    requires { 0. <. (x_exact -. x_rel *. x_factor -. x_abs) }
    requires { 0. <=. log_rel }
    ensures {
      abs (to_real log2x_f -. log2 (x_exact))
        <=. log_rel *. abs (log2 (x_exact)) +.
          (-. log2 (1. -. ((x_rel *. x_factor +. x_abs) /. x_exact)) *. (1. +. log_rel)
          +. log_abs)
    }
  =
  log2_approx_err x_exact (to_real x_f) x_factor x_rel x_abs;
  assert {
   abs (log2 (to_real x_f)) *. log_rel
    <=. (abs (log2 (x_exact)) -. log2 (1.0 -. (((x_rel *. x_factor) +. x_abs) /. x_exact))) *. log_rel
  }

  let lemma log10_single_error_propagation (log10x_f x_f : usingle)
        (x_exact x_factor log_rel log_abs x_rel x_abs : real)
    requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
    requires {
      abs (to_real log10x_f -. log10(to_real x_f))
       <=. log_rel *. abs (log10 (to_real x_f)) +. log_abs
    }
    requires { 0. <. x_exact <=. x_factor }
    requires { 0. <. (x_exact -. x_rel *. x_factor -. x_abs) }
    requires { 0. <=. log_rel }
    ensures {
      abs (to_real log10x_f -. log10 (x_exact))
        <=. log_rel *. abs (log10 (x_exact)) +.
          (-. log10 (1. -. ((x_rel *. x_factor +. x_abs) /. x_exact)) *. (1. +. log_rel)
          +. log_abs)
    }
  =
  log10_approx_err x_exact (to_real x_f) x_factor x_rel x_abs;
  assert {
   abs (log10 (to_real x_f)) *. log_rel
    <=. (abs (log10 (x_exact)) -. log10 (1.0 -. (((x_rel *. x_factor) +. x_abs) /. x_exact))) *. log_rel
  }

  let lemma exp_single_error_propagation (expx_f x_f : usingle)
        (x_exact x_factor exp_rel exp_abs x_rel x_abs : real)
    requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
    requires {
      abs (to_real expx_f -. exp(to_real x_f))
        <=. exp_rel *. exp (to_real x_f) +. exp_abs
    }
    requires { x_exact <=. x_factor }
    requires { 0. <=. exp_rel <=. 1. }
    ensures {
      abs (to_real expx_f -. exp (x_exact))
      <=. (exp_rel +. (exp(x_rel *. x_factor +. x_abs) -. 1.) *. (1. +. exp_rel)) *. exp(x_exact)
        +. exp_abs
    }
  =
    exp_approx_err x_exact (to_real x_f) x_factor x_rel x_abs;
    assert {
      exp x_exact *. (1. -. exp_rel) -.
      exp x_exact *. (exp (x_rel *. x_factor +. x_abs) -. 1.) *. (1. -. exp_rel)
      -. exp_abs
      <=. to_real expx_f
      by
        (exp x_exact -. exp x_exact *. (exp (x_rel *. x_factor +. x_abs) -. 1.))
         *. (1. -. exp_rel) -. exp_abs
        <=. exp (to_real x_f) *. (1. -. exp_rel) -. exp_abs
        <=. to_real expx_f
    };
    assert {
      to_real expx_f <=. (exp(x_exact) +. exp(x_exact)*.(exp(x_rel *. x_factor +. x_abs) -. 1.))*. (1. +. exp_rel) +. exp_abs
      by
        to_real expx_f <=. exp(to_real x_f) *. (1. +. exp_rel) +. exp_abs
    };

  use real.Trigonometry

  let lemma sin_single_error_propagation (sinx_f x_f : usingle)
        (x_exact x_factor sin_rel sin_abs x_rel x_abs : real)
    requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
    requires {
      abs (to_real sinx_f -. sin(to_real x_f))
        <=. sin_rel *. abs (sin (to_real x_f)) +. sin_abs
    }
    requires { x_exact <=. x_factor }
    requires { 0. <=. sin_rel }
    ensures {
      abs (to_real sinx_f -. sin (x_exact))
      <=. sin_rel *. abs(sin(x_exact))
          +. (((x_rel *. x_factor +. x_abs) *. (1. +. sin_rel)) +. sin_abs)
    }
  =
  assert {
  abs (sin (to_real x_f)) *. sin_rel
  <=. (abs (sin x_exact) +. (x_rel *. x_factor +. x_abs)) *. sin_rel
  }

  let lemma cos_single_error_propagation (cosx_f x_f : usingle)
        (x_exact x_factor cos_rel cos_abs x_rel x_abs : real)
    requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
    requires {
      abs (to_real cosx_f -. cos(to_real x_f))
        <=. cos_rel *. abs (cos (to_real x_f)) +. cos_abs
    }
    requires { x_exact <=. x_factor }
    requires { 0. <=. cos_rel }
    ensures {
      abs (to_real cosx_f -. cos (x_exact))
      <=. cos_rel *. abs(cos(x_exact))
          +. (((x_rel *. x_factor +. x_abs) *. (1. +. cos_rel)) +. cos_abs)
    }
  =
  assert {
  abs (cos (to_real x_f)) *. cos_rel
  <=. (abs (cos x_exact) +. (x_rel *. x_factor +. x_abs)) *. cos_rel
  }

  use real.Sum
  use int.Int
  use real.FromInt

  function real_fun (f:int -> usingle) : int -> real = fun i -> to_real (f i)

  let lemma sum_single_error_propagation (x : usingle)
                (f : int -> usingle) (f_exact f_factor f_factor' : int -> real) (n:int)
                (sum_rel sum_abs f_rel f_abs : real)
    requires {
      forall i. 0 <= i < n ->
        abs ((real_fun f) i -. f_exact i) <=. f_rel *. f_factor i +. f_abs
    }
    requires {
      forall i. 0 <= i < n ->
      f_factor i -. f_rel *. f_factor i -. f_abs <=. f_factor' i <=. f_factor i +. f_rel *. f_factor i +. f_abs
    }
    requires {
      abs (to_real x -. (sum (real_fun f) 0 n))
        <=. sum_rel *. (sum f_factor' 0 n) +. sum_abs
    }
    requires { 0. <=. sum_rel }
    requires { 0 <= n }
    ensures {
      abs (to_real x -. sum f_exact 0 n)
      <=. (f_rel +. (sum_rel *. (1. +. f_rel))) *. sum f_factor 0 n +.
        ((f_abs *. from_int n *.(1. +. sum_rel)) +. sum_abs)
    }
  =
  sum_approx_err f_rel f_abs (real_fun f) f_exact f_factor 0 n;
  sum_approx_err f_rel f_abs f_factor' f_factor f_factor 0 n;
  assert {
    sum_rel *. sum f_factor' 0 n <=.
    sum_rel *. (sum f_factor 0 n +. ((f_rel *. sum f_factor 0 n) +. (f_abs *. from_int n)))
  }

  (* We don't have an error on y_f because in practice we won't have an exact division with an approximate divisor *)
  let lemma udiv_exact_single_error_propagation (x_f y_f r: usingle) (x x_factor x_rel x_abs : real)
    requires {
      abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs
    }
    requires { abs x <=. x_factor }
    requires { 0. <=. x_rel }
    requires { 0. <=. x_abs }
    requires { 0. <> to_real y_f }
    requires { is_exact udiv x_f y_f }
    requires { r = x_f ///. y_f }
    ensures {
      abs (to_real r -. (x /. (to_real y_f))) <=.
        x_rel *. (x_factor /. abs (to_real y_f)) +. ((x_abs /. abs (to_real y_f)) +. eta)
    }
  =
  let lemma y_f_pos ()
    requires { 0. <. to_real y_f }
    ensures {
      abs (to_real r -. (x /. (to_real y_f))) <=.
        x_rel *. (x_factor /. to_real y_f) +. ((x_abs /. to_real y_f) +. eta)
    }
    =
    div_order_compat (to_real x_f) (x +. x_rel *. x_factor +. x_abs) (to_real y_f);
    div_order_compat (x -. x_rel *. x_factor -. x_abs) (to_real x_f) (to_real y_f) in
  let lemma y_f_neg ()
    requires { to_real y_f <. 0. }
    ensures {
      abs (to_real r -. (x /. (to_real y_f))) <=.
        x_rel *. (x_factor /. abs (to_real y_f)) +. ((x_abs /. abs (to_real y_f)) +. eta)
    }
    =
    div_order_compat2 (to_real x_f) (x +. x_rel *. x_factor +. x_abs) (to_real y_f);
    (* TODO: Prove this somehow *)
    assert {
      forall x y. y <> 0.0 -> x /. y <=. abs x /. abs y
      by abs (x /. y) = abs (x *. inv y) = abs x *. abs (inv y) = abs x *. inv (abs y) = abs x /. abs y
    };
    assert {
      (x -. x_rel *. x_factor -. x_abs) /. to_real y_f
      <=. x /. (to_real y_f) +. ((x_rel *. x_factor) +. x_abs) /. abs (to_real y_f)
      by
        (-. x_rel *. x_factor -. x_abs) /. to_real y_f
        <=. (x_rel *. x_factor +. x_abs) /. abs (to_real y_f)
    };
    div_order_compat2 (x -. x_rel *. x_factor -. x_abs) (to_real x_f) (to_real y_f);
  in ()
end

module UDoubleLemmas
  use real.RealInfix
  use real.FromInt
  use real.Abs
  use UDouble
Double propagation lemmas
  let lemma uadd_double_error_propagation (x_f y_f r : udouble) (x x_factor x_rel x_abs y y_factor y_rel y_abs : real)
    requires {
      abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs
    }
    requires {
      abs (to_real y_f -. y) <=. y_rel *. y_factor +. y_abs
    }
    requires { abs x <=. x_factor }
    requires { abs y <=. y_factor }
    (* TODO: Use (0 <=. x_rel \/ (x_factor = 0 /\ x_abs = 0)), same for y. *)
    requires { 0. <=. x_rel }
    requires { 0. <=. y_rel }
    requires { 0. <=. x_abs }
    requires { 0. <=. y_abs }
    requires { r = x_f ++. y_f }
    ensures {
      abs (to_real r -. (x +. y)) <=.
      (x_rel +. y_rel +. eps) *. (x_factor +. y_factor)
          +. ((1. +. eps +. y_rel) *. x_abs +. (1. +. eps +. x_rel) *. y_abs)
    }
  =
  let ghost delta = abs (to_real (x_f ++. y_f) -. (to_real x_f +. to_real y_f)) in
  assert {
    0. <=. x_rel /\ 0. <=. y_rel ->
    delta <=.
      (eps +. y_rel) *. x_factor +. (eps +. x_rel) *. y_factor
      +. (x_rel +. eps) *. y_abs +. (y_rel +. eps) *. x_abs
    by
      (delta <=. x_factor *. x_rel +. x_abs +. x_factor
      so
        x_factor +. x_abs <=. eps *. (y_factor +. y_abs) ->
        delta <=. (eps +. x_rel) *. y_factor
        +. (eps +. y_rel) *. x_factor
        +. (y_rel +. eps) *. x_abs +. (x_rel +. eps) *. y_abs
      by
        delta <=. eps *. (y_factor +. y_abs) *. x_rel
              +. (eps *. (y_factor +. y_abs)))
      /\
      (delta <=. y_factor *. y_rel +. y_abs +. y_factor
      so
      abs y_factor +. y_abs <=. eps *. (x_factor +. x_abs) ->
      delta <=. (eps +. y_rel) *. x_factor
        +. (eps +. x_rel) *. y_factor
        +. (x_rel +. eps) *. y_abs +. (y_rel +. eps) *. x_abs
      by
        delta <=. eps *. (x_factor +. x_abs) *. y_rel
              +. (eps *. (x_factor +. x_abs)))
      /\
      (
       (eps *. (x_factor +. x_abs) <. abs y_factor +. y_abs /\
       eps *. (y_factor +. y_abs) <. abs x_factor +. x_abs) ->
       (delta <=.
       (eps +. y_rel) *. x_factor +. (eps +. x_rel) *. y_factor
      +. (x_rel +. eps) *. y_abs +. (y_rel +. eps) *. x_abs
      by
        abs (to_real x_f +. to_real y_f) <=.
        abs (to_real x_f -. x) +. x_factor +. (abs (to_real y_f -. y) +. y_factor)
      so
        x_factor *. x_rel <=. (y_factor +. y_abs) /. eps *. x_rel /\
        y_factor *. y_rel <=. (x_factor +. x_abs) /. eps *. y_rel))
  }

  let lemma usub_double_error_propagation (x_f y_f r : udouble) (x x_factor x_rel x_abs y y_factor y_rel y_abs : real)
    requires {
      abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs
    }
    requires {
      abs (to_real y_f -. y) <=. y_rel *. y_factor +. y_abs
    }
    requires { abs x <=. x_factor }
    requires { abs y <=. y_factor }
    requires { 0. <=. x_abs }
    requires { 0. <=. y_abs }
    requires { 0. <=. x_rel }
    requires { 0. <=. y_rel }
    requires { r = x_f --. y_f }
    ensures {
      abs (to_real r -. (x -. y))
      <=. (x_rel +. y_rel +. eps) *. (x_factor +. y_factor)
          +. ((1. +. eps +. y_rel) *. x_abs +. (1. +. eps +. x_rel) *. y_abs)
    }
  = uadd_double_error_propagation x_f (--. y_f) r x x_factor x_rel x_abs (-. y) y_factor y_rel y_abs

  use HelperLemmas

  let lemma umul_double_error_propagation (x_f y_f r : udouble) (x x_factor x_rel x_abs y y_factor y_rel y_abs : real)
    requires {
      abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs
    }
    requires {
      abs (to_real y_f -. y) <=. y_rel *. y_factor +. y_abs
    }
    requires { abs x <=. x_factor }
    requires { abs y <=. y_factor }
    requires { 0. <=. x_rel }
    requires { 0. <=. y_rel }
    requires { 0. <=. x_abs }
    requires { 0. <=. y_abs }
    requires { r = x_f **. y_f }
    ensures {
      abs (to_real r -. (x *. y)) <=.
        (eps +. (x_rel +. y_rel +. x_rel *. y_rel) *. (1. +. eps)) *. (x_factor *. y_factor)
        +. (((y_abs +. y_abs *. x_rel) *. x_factor
        +. (x_abs +. x_abs *. y_rel) *. y_factor
        +. x_abs *. y_abs) *. (1. +. eps) +. eta)
    }
  =
  assert {
    to_real x_f *. to_real y_f -. abs (to_real x_f *. to_real y_f) *. eps -. eta
    <=. to_real (x_f **. y_f)
    <=. to_real x_f *. to_real y_f +. abs (to_real x_f *. to_real y_f) *. eps +. eta
  };
    assert { abs (x *. y) <=. x_factor *. y_factor by
       abs x *. abs y <=. x_factor *. abs y = abs y *. x_factor <=. y_factor *. x_factor };
  mult_err_combine (to_real x_f) x x_factor x_rel x_abs (to_real y_f) y y_factor y_rel y_abs

  use real.ExpLog

  let lemma log_double_error_propagation (logx_f x_f : udouble)
        (x_exact x_factor log_rel log_abs x_rel x_abs : real)
    requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
    requires {
      abs (to_real logx_f -. log(to_real x_f))
       <=. log_rel *. abs (log (to_real x_f)) +. log_abs
    }
    requires { 0. <. x_exact <=. x_factor }
    requires { 0. <. (x_exact -. x_rel *. x_factor -. x_abs) }
    requires { 0. <=. log_rel }
    ensures {
      abs (to_real logx_f -. log (x_exact))
        <=. log_rel *. abs (log (x_exact)) +.
          (-. log (1. -. ((x_rel *. x_factor +. x_abs) /. x_exact)) *. (1. +. log_rel)
          +. log_abs)
    }
  =
  log_approx_err x_exact (to_real x_f) x_factor x_rel x_abs;
  assert {
   abs (log (to_real x_f)) *. log_rel
    <=. (abs (log (x_exact)) -. log (1.0 -. (((x_rel *. x_factor) +. x_abs) /. x_exact))) *. log_rel
  }

  let lemma log2_double_error_propagation (log2x_f x_f : udouble)
        (x_exact x_factor log_rel log_abs x_rel x_abs : real)
    requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
    requires {
      abs (to_real log2x_f -. log2(to_real x_f))
       <=. log_rel *. abs (log2 (to_real x_f)) +. log_abs
    }
    requires { 0. <. x_exact <=. x_factor }
    requires { 0. <. (x_exact -. x_rel *. x_factor -. x_abs) }
    requires { 0. <=. log_rel }
    ensures {
      abs (to_real log2x_f -. log2 (x_exact))
        <=. log_rel *. abs (log2 (x_exact)) +.
          (-. log2 (1. -. ((x_rel *. x_factor +. x_abs) /. x_exact)) *. (1. +. log_rel)
          +. log_abs)
    }
  =
  log2_approx_err x_exact (to_real x_f) x_factor x_rel x_abs;
  assert {
   abs (log2 (to_real x_f)) *. log_rel
    <=. (abs (log2 (x_exact)) -. log2 (1.0 -. (((x_rel *. x_factor) +. x_abs) /. x_exact))) *. log_rel
  }

  let lemma log10_double_error_propagation (log10x_f x_f : udouble)
        (x_exact x_factor log_rel log_abs x_rel x_abs : real)
    requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
    requires {
      abs (to_real log10x_f -. log10(to_real x_f))
       <=. log_rel *. abs (log10 (to_real x_f)) +. log_abs
    }
    requires { 0. <. x_exact <=. x_factor }
    requires { 0. <. (x_exact -. x_rel *. x_factor -. x_abs) }
    requires { 0. <=. log_rel }
    ensures {
      abs (to_real log10x_f -. log10 (x_exact))
        <=. log_rel *. abs (log10 (x_exact)) +.
          (-. log10 (1. -. ((x_rel *. x_factor +. x_abs) /. x_exact)) *. (1. +. log_rel)
          +. log_abs)
    }
  =
  log10_approx_err x_exact (to_real x_f) x_factor x_rel x_abs;
  assert {
   abs (log10 (to_real x_f)) *. log_rel
    <=. (abs (log10 (x_exact)) -. log10 (1.0 -. (((x_rel *. x_factor) +. x_abs) /. x_exact))) *. log_rel
  }

  let lemma exp_double_error_propagation (expx_f x_f : udouble)
        (x_exact x_factor exp_rel exp_abs x_rel x_abs : real)
    requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
    requires {
      abs (to_real expx_f -. exp(to_real x_f))
        <=. exp_rel *. exp (to_real x_f) +. exp_abs
    }
    requires { x_exact <=. x_factor }
    requires { 0. <=. exp_rel <=. 1. }
    ensures {
      abs (to_real expx_f -. exp (x_exact))
      <=. (exp_rel +. (exp(x_rel *. x_factor +. x_abs) -. 1.) *. (1. +. exp_rel)) *. exp(x_exact)
        +. exp_abs
    }
  =
    exp_approx_err x_exact (to_real x_f) x_factor x_rel x_abs;
    assert {
      exp x_exact *. (1. -. exp_rel) -.
      exp x_exact *. (exp (x_rel *. x_factor +. x_abs) -. 1.) *. (1. -. exp_rel)
      -. exp_abs
      <=. to_real expx_f
      by
        (exp x_exact -. exp x_exact *. (exp (x_rel *. x_factor +. x_abs) -. 1.))
         *. (1. -. exp_rel) -. exp_abs
        <=. exp (to_real x_f) *. (1. -. exp_rel) -. exp_abs
        <=. to_real expx_f
    };
    assert {
      to_real expx_f <=. (exp(x_exact) +. exp(x_exact)*.(exp(x_rel *. x_factor +. x_abs) -. 1.))*. (1. +. exp_rel) +. exp_abs
      by
        to_real expx_f <=. exp(to_real x_f) *. (1. +. exp_rel) +. exp_abs
    };

  use real.Trigonometry

  let lemma sin_double_error_propagation (sinx_f x_f : udouble)
        (x_exact x_factor sin_rel sin_abs x_rel x_abs : real)
    requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
    requires {
      abs (to_real sinx_f -. sin(to_real x_f))
        <=. sin_rel *. abs (sin (to_real x_f)) +. sin_abs
    }
    requires { x_exact <=. x_factor }
    requires { 0. <=. sin_rel }
    ensures {
      abs (to_real sinx_f -. sin (x_exact))
      <=. sin_rel *. abs(sin(x_exact))
          +. (((x_rel *. x_factor +. x_abs) *. (1. +. sin_rel)) +. sin_abs)
    }
  =
  assert {
  abs (sin (to_real x_f)) *. sin_rel
  <=. (abs (sin x_exact) +. (x_rel *. x_factor +. x_abs)) *. sin_rel
  }

  let lemma cos_double_error_propagation (cosx_f x_f : udouble)
        (x_exact x_factor cos_rel cos_abs x_rel x_abs : real)
    requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
    requires {
      abs (to_real cosx_f -. cos(to_real x_f))
        <=. cos_rel *. abs (cos (to_real x_f)) +. cos_abs
    }
    requires { x_exact <=. x_factor }
    requires { 0. <=. cos_rel }
    ensures {
      abs (to_real cosx_f -. cos (x_exact))
      <=. cos_rel *. abs(cos(x_exact))
          +. (((x_rel *. x_factor +. x_abs) *. (1. +. cos_rel)) +. cos_abs)
    }
  =
  assert {
  abs (cos (to_real x_f)) *. cos_rel
  <=. (abs (cos x_exact) +. (x_rel *. x_factor +. x_abs)) *. cos_rel
  }

  use real.Sum
  use int.Int
  use real.FromInt

  function real_fun (f:int -> udouble) : int -> real = fun i -> to_real (f i)

  let lemma sum_double_error_propagation (x : udouble)
                (f : int -> udouble) (f_exact f_factor f_factor' : int -> real) (n:int)
                (sum_rel sum_abs f_rel f_abs : real)
    requires {
      forall i. 0 <= i < n ->
        abs ((real_fun f) i -. f_exact i) <=. f_rel *. f_factor i +. f_abs
    }
    requires {
      forall i. 0 <= i < n ->
      f_factor i -. f_rel *. f_factor i -. f_abs <=. f_factor' i <=. f_factor i +. f_rel *. f_factor i +. f_abs
    }
    requires {
      abs (to_real x -. (sum (real_fun f) 0 n))
        <=. sum_rel *. (sum f_factor' 0 n) +. sum_abs
    }
    requires { 0. <=. sum_rel }
    requires { 0 <= n }
    ensures {
      abs (to_real x -. sum f_exact 0 n)
      <=. (f_rel +. (sum_rel *. (1. +. f_rel))) *. sum f_factor 0 n +.
        ((f_abs *. from_int n *.(1. +. sum_rel)) +. sum_abs)
    }
  =
  sum_approx_err f_rel f_abs (real_fun f) f_exact f_factor 0 n;
  sum_approx_err f_rel f_abs f_factor' f_factor f_factor 0 n;
  assert {
    sum_rel *. sum f_factor' 0 n <=.
    sum_rel *. (sum f_factor 0 n +. ((f_rel *. sum f_factor 0 n) +. (f_abs *. from_int n)))
  }

  (* We don't have an error on y_f because in practice we won't have an exact division with an approximate divisor *)
  let lemma udiv_exact_single_error_propagation (x_f y_f r: udouble) (x x_factor x_rel x_abs : real)
    requires {
      abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs
    }
    requires { abs x <=. x_factor }
    requires { 0. <=. x_rel }
    requires { 0. <=. x_abs }
    requires { 0. <> to_real y_f }
    requires { is_exact udiv x_f y_f }
    requires { r = x_f ///. y_f }
    ensures {
      abs (to_real r -. (x /. (to_real y_f))) <=.
        x_rel *. (x_factor /. abs (to_real y_f)) +. ((x_abs /. abs (to_real y_f)) +. eta)
    }
  =
  let lemma y_f_pos ()
    requires { 0. <. to_real y_f }
    ensures {
      abs (to_real r -. (x /. (to_real y_f))) <=.
        x_rel *. (x_factor /. to_real y_f) +. ((x_abs /. to_real y_f) +. eta)
    }
    =
    div_order_compat (to_real x_f) (x +. x_rel *. x_factor +. x_abs) (to_real y_f);
    div_order_compat (x -. x_rel *. x_factor -. x_abs) (to_real x_f) (to_real y_f) in
  let lemma y_f_neg ()
    requires { to_real y_f <. 0. }
    ensures {
      abs (to_real r -. (x /. (to_real y_f))) <=.
        x_rel *. (x_factor /. abs (to_real y_f)) +. ((x_abs /. abs (to_real y_f)) +. eta)
    }
    =
    div_order_compat2 (to_real x_f) (x +. x_rel *. x_factor +. x_abs) (to_real y_f);
    (* TODO: Prove this somehow *)
    assert {
      forall x y. x /. y <=. abs x /. abs y
    };
    assert {
      (x -. x_rel *. x_factor -. x_abs) /. to_real y_f
      <=. x /. (to_real y_f) +. ((x_rel *. x_factor) +. x_abs) /. abs (to_real y_f)
      by
        (-. x_rel *. x_factor -. x_abs) /. to_real y_f
        <=. (x_rel *. x_factor +. x_abs) /. abs (to_real y_f)
    };
    div_order_compat2 (x -. x_rel *. x_factor -. x_abs) (to_real x_f) (to_real y_f);
  in ()
end

Generated by why3doc 1.8.0