Why3 Standard Library index
See also this report
module UFloat use real.RealInfix use real.FromInt use real.Abs use ieee_float.RoundingMode type t val function uround mode real : t val function to_real t : real val function of_int int : t axiom to_real_of_int : forall x [of_int x]. to_real (of_int x) = from_int x val function uzero : t axiom uzero_spec : to_real uzero = 0.0 val function uone : t axiom uone_spec : to_real uone = 1.0 val function utwo : t axiom utwo_spec : to_real utwo = 2.0 constant eps:real constant eta:real axiom eps_bounds : 0. <. eps <. 1. axiom eta_bounds : 0. <. eta <. 1. (* To avoid "inline_trivial" to break the forward_propagation strategy *) meta "inline:no" function eps meta "inline:no" function eta let function uadd (x y:t) : t (* TODO: Do we want the two first assertions in our context ? We only use them to prove the addition lemma *) ensures { abs (to_real result -. (to_real x +. to_real y)) <=. abs (to_real x) } ensures { abs (to_real result -. (to_real x +. to_real y)) <=. abs (to_real y) } ensures { abs (to_real result -. (to_real x +. to_real y)) <=. abs (to_real x +. to_real y) *. eps } = uround RNE (to_real x +. to_real y) let function usub (x y:t) : t (* TODO: Do we want the two first assertions in our context ? We only use them to prove the addition lemma *) ensures { abs (to_real result -. (to_real x -. to_real y)) <=. abs (to_real x) } ensures { abs (to_real result -. (to_real x -. to_real y)) <=. abs (to_real y) } ensures { abs (to_real result -. (to_real x -. to_real y)) <=. abs (to_real x -. to_real y) *. eps } = uround RNE (to_real x -. to_real y) let function umul (x y:t) : t ensures { abs (to_real result -. (to_real x *. to_real y)) <=. abs (to_real x *. to_real y) *. eps +. eta } = uround RNE (to_real x *. to_real y) let function udiv (x y:t) : t requires { to_real y <> 0. } ensures { abs (to_real result -. (to_real x /. to_real y)) <=. abs (to_real x /. to_real y) *. eps +. eta } = uround RNE (to_real x /. to_real y) let function uminus (x:t) : t ensures { to_real result = -. (to_real x) } = uround RNE (-. (to_real x)) predicate is_exact (uop : t -> t -> t) (x y :t) (* Exact division but can still underflow, giving eta as error *) let function udiv_exact (x y:t) : t requires { to_real y <> 0. } requires { is_exact udiv x y } ensures { abs (to_real result -. (to_real x /. to_real y)) <=. eta } = uround RNE (to_real x /. to_real y) let function ( ++. ) (x:t) (y:t) : t = uadd x y let function ( --. ) (x:t) (y:t) : t = usub x y let function ( **. ) (x:t) (y:t) : t = umul x y (* Why3 doesn't support abbreviations so we need to add the requires *) let function ( //. ) (x:t) (y:t) : t requires { to_real y <> 0. } = udiv x y let function ( --._ ) (x:t) : t = uminus x let function ( ///. ) (x:t) (y:t) : t requires { to_real y <> 0. } requires { is_exact udiv x y } = udiv_exact x y
Infix operators
(* Some constants *) constant u0:t axiom to_real_u0 : to_real u0 = 0.0 constant u1:t axiom to_real_u1 : to_real u1 = 1.0 constant u2:t axiom to_real_u2 : to_real u2 = 2.0 constant u4:t axiom to_real_u4 : to_real u4 = 4.0 constant u8:t axiom to_real_u8 : to_real u8 = 8.0 constant u16:t axiom to_real_u16 : to_real u16 = 16.0 constant u32:t axiom to_real_u32 : to_real u32 = 32.0 constant u64:t axiom to_real_u64 : to_real u64 = 64.0 constant u128:t axiom to_real_u128 : to_real u128 = 128.0 constant u256:t axiom to_real_u256 : to_real u256 = 256.0 constant u512:t axiom to_real_u512 : to_real u512 = 512.0 constant u1024:t axiom to_real_u1024 : to_real u1024 = 1024.0 constant u2048:t axiom to_real_u2048 : to_real u2048 = 2048.0 constant u4096:t axiom to_real_u4096 : to_real u4096 = 4096.0 constant u8192:t axiom to_real_u8192 : to_real u8192 = 8192.0 constant u16384:t axiom to_real_u16384 : to_real u16384 = 16384.0 constant u32768:t axiom to_real_u32768 : to_real u32768 = 32768.0 constant u65536:t axiom to_real_u65536 : to_real u65536 = 65536.0 predicate is_positive_power_of_2 (x:t) = x = u1 \/ x = u2 || x = u4 || x = u8 || x = u16 || x = u32 || x = u64 || x = u128 \/ x = u256 || x = u4096 || x = u8192 || x = u16384 || x = u32768 || x = u65536 axiom div_by_positive_power_of_2_is_exact : forall x y. is_positive_power_of_2 y -> is_exact udiv x y end module USingle use real.RealInfix
type usingle constant eps:real = 0x1p-24 /. (1. +. 0x1p-24) constant eta:real = 0x1p-150 clone export UFloat with type t = usingle, constant eps = eps, constant eta = eta, axiom. end module UDouble use real.RealInfix type udouble
constant eps:real = 0x1p-53 /. (1. +. 0x1p-53) constant eta:real = 0x1p-1075 clone export UFloat with type t = udouble, constant eps = eps, constant eta = eta, axiom. end (* Helper lemmas to help the proof of propagation lemmas *) module HelperLemmas use real.RealInfix use real.Abs let ghost div_order_compat (x y z:real) requires { x <=. y } requires { 0. <. z } ensures { x /. z <=. y /. z } = () let ghost div_order_compat2 (x y z:real) requires { x <=. y } requires { 0. >. z } ensures { y /. z <=. x /. z } = () let ghost mult_err (x x_exact x_factor x_rel x_abs y:real) requires { 0. <=. x_rel } requires { 0. <=. x_abs } requires { abs x_exact <=. x_factor } requires { abs (x -. x_exact) <=. x_rel *. x_factor +. x_abs } ensures { abs (x *. y -. x_exact *. y) <=. x_rel *. abs (x_factor *. y) +. x_abs *. abs y } = assert { y >=. 0. -> abs (x *. y -. x_exact *. y) <=. abs (x_rel *. x_factor *. y) +. x_abs *. abs y by (x_exact -. x_rel *. x_factor -. x_abs) *. y <=. x *. y <=. (x_exact +. x_rel *. x_factor +. x_abs) *. y }; assert { y <. 0. -> abs (x *. y -. x_exact *. y) <=. abs (x_rel *. x_factor *. y) +. x_abs *. abs y by (x_exact +. x_rel *. x_factor +. x_abs) *. y <=. x *. y <=. (x_exact -. x_rel *. x_factor -. x_abs) *. y } let ghost mult_err_combine (x x_exact x_factor x_rel x_abs y exact_y y_factor y_rel y_abs:real) requires { 0. <=. x_rel } requires { 0. <=. y_rel } requires { 0. <=. x_abs } requires { 0. <=. y_abs } requires { abs x_exact <=. x_factor } requires { abs exact_y <=. y_factor } requires { abs (x -. x_exact) <=. x_rel *. x_factor +. x_abs } requires { abs (y -. exact_y) <=. y_rel *. y_factor +. y_abs } ensures { abs (x *. y -. x_exact *. exact_y) <=. (x_rel +. y_rel +. x_rel *. y_rel) *. (x_factor *. y_factor) +. (y_abs +. y_abs *. x_rel) *. x_factor +. (x_abs +. x_abs *. y_rel) *. y_factor +. x_abs *. y_abs } = mult_err x x_exact x_factor x_rel x_abs y; mult_err y exact_y y_factor y_rel y_abs x_exact; mult_err y exact_y y_factor y_rel y_abs x_factor; assert { abs (x *. y -. x_exact *. exact_y) <=. (y_rel *. x_factor *. y_factor) +. (y_abs *. x_factor) +. (x_rel *. abs (x_factor *. y)) +. x_abs *. abs y }; assert { abs (x *. y -. x_exact *. exact_y) <=. (y_rel *. x_factor *. y_factor) +. (x_rel *. (x_factor *. y_factor *. (1. +. y_rel) +. x_factor *. y_abs)) +. y_abs *. x_factor +. x_abs *. abs y by abs (x_factor *. y) <=. x_factor *. y_factor *. (1. +. y_rel) +. x_factor *. y_abs }; assert { x_abs *. abs y <=. x_abs *. (y_factor *. (1. +. y_rel) +. y_abs) } use real.ExpLog let ghost exp_approx_err (x x_approx x_factor a b :real) requires { abs (x_approx -. x) <=. x_factor *. a +. b } requires { x <=. x_factor } ensures { abs (exp(x_approx) -. exp(x)) <=. exp(x) *. (exp(a *. x_factor +. b) -. 1.) } = assert { exp(x_approx) <=. exp(x) +. exp(x) *. (exp(a *. x_factor +. b) -. 1.) by exp (x_approx) <=. exp(x) *. exp (a *. x_factor +. b) }; assert { exp(x_approx) >=. exp(x) -. exp(x) *. (exp(a *. x_factor +. b) -. 1.) by exp (x_approx) >=. exp(x) *. exp (-. a *. x_factor -. b) so exp(x_approx) -. exp(x) >=. exp(x) *. (exp (-. a *. x_factor -. b) -. 1.) so exp(a *. x_factor +. b) +. exp(-.a *. x_factor -. b) >=. 2. so -. exp(a *. x_factor +. b) +. 1. <=. exp(-.a *. x_factor -. b) -. 1. so exp(x) *. ((-. exp(a *. x_factor +. b)) +. 1.) <=. exp(x) *. (exp(-. a *. x_factor -. b) -. 1.) so -. exp(x) *. (exp(a *. x_factor +. b) -. 1.) <=. exp(x) *. (exp(-. a *. x_factor -. b) -. 1.) } let lemma log_1_minus_x (x:real) requires { 0. <=. abs x <. 1. } ensures { log (1. +. x) <=. -. log (1. -. x) } = assert { 1. +. x <=. 1. /. (1. -. x) }; assert { forall x y z. 0. <=. x -> 0. <. y -> 0. <=. z -> x *. y <=. z -> x <=. z /. y }; assert { exp (-.log (1. -. x)) = 1. /. (1. -. x) } let lemma log2_1_minus_x (x:real) requires { 0. <=. abs x <. 1. } ensures { log2 (1. +. x) <=. -. log2 (1. -. x) } = div_order_compat (log (1. +. x)) (-. log (1. -. x)) (log 2.); log_1_minus_x x let lemma log10_1_minus_x (x:real) requires { 0. <=. abs x <. 1. } ensures { log10 (1. +. x) <=. -. log10 (1. -. x) } = div_order_compat (log (1. +. x)) (-. log (1. -. x)) (log 10.); log_1_minus_x x let ghost log_approx_err (x x_approx x_factor a b :real) requires { abs (x_approx -. x) <=. x_factor *. a +. b } requires { 0. <. (x -. a *. x_factor -. b) } requires { 0. <. x <=. x_factor } ensures { abs (log x_approx -. log x) <=. -. log(1. -. ((a *. x_factor +. b) /. x)) } = assert { a *. x_factor +. b = x *. ((a *. x_factor +. b) /. x) }; assert { log (x *. (1. -. (a *. x_factor +. b) /. x)) <=. log x_approx <=. log (x *. (1. +. (a *. x_factor +. b) /.x)) by 0. <. (x -. (a *. x_factor +. b)) <=. x_approx }; log_1_minus_x ((a *. x_factor +. b) /. x) let ghost log2_approx_err (x x_approx x_factor a b :real) requires { abs (x_approx -. x) <=. x_factor *. a +. b } requires { 0. <. (x -. a *. x_factor -. b) } requires { 0. <. x <=. x_factor } ensures { abs (log2 x_approx -. log2 x) <=. -. log2(1. -. ((a *. x_factor +. b) /. x)) } = assert { a *. x_factor +. b = x *. ((a *. x_factor +. b) /. x) }; assert { log2 (x *. (1. -. (a *. x_factor +. b) /. x)) <=. log2 x_approx <=. log2 (x *. (1. +. (a *. x_factor +. b) /.x)) by 0. <. (x -. (a *. x_factor +. b)) <=. x_approx }; log2_1_minus_x ((a *. x_factor +. b) /. x) let ghost log10_approx_err (x x_approx x_factor a b :real) requires { abs (x_approx -. x) <=. x_factor *. a +. b } requires { 0. <. (x -. a *. x_factor -. b) } requires { 0. <. x <=. x_factor } ensures { abs (log10 x_approx -. log10 x) <=. -. log10(1. -. ((a *. x_factor +. b) /. x)) } = assert { a *. x_factor +. b = x *. ((a *. x_factor +. b) /. x) }; assert { log10 (x *. (1. -. (a *. x_factor +. b) /. x)) <=. log10 x_approx <=. log10 (x *. (1. +. (a *. x_factor +. b) /.x)) by 0. <. (x -. (a *. x_factor +. b)) <=. x_approx }; log10_1_minus_x ((a *. x_factor +. b) /. x) use real.Trigonometry lemma sin_of_approx : forall x y. abs (sin x -. sin y) <=. abs (x -. y) lemma cos_of_approx : forall x y. abs (cos x -. cos y) <=. abs (x -. y) use real.Sum use int.Int use real.FromInt let rec ghost sum_approx_err (fi_rel fi_abs:real) (f f_exact f_factor : int -> real) (a b:int) requires { a <= b } requires { forall i. a <= i < b -> abs (f i -. f_exact i) <=. f_factor i *. fi_rel +. fi_abs } variant { b - a } ensures { abs (sum f a b -. sum f_exact a b) <=. fi_rel *. sum f_factor a b +. fi_abs *. from_int (b-a) } = if (a < b) then begin sum_approx_err fi_rel fi_abs f f_exact f_factor a (b - 1) end end module USingleLemmas use real.RealInfix use real.FromInt use real.Abs use USingle
let lemma uadd_single_error_propagation (x_f y_f r: usingle) (x x_factor x_rel x_abs y y_factor y_rel y_abs : real) requires { abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs } requires { abs (to_real y_f -. y) <=. y_rel *. y_factor +. y_abs } requires { abs x <=. x_factor } requires { abs y <=. y_factor } (* TODO: Use (0 <=. x_rel \/ (x_factor = 0 /\ x_abs = 0)), same for y. *) requires { 0. <=. x_rel } requires { 0. <=. y_rel } requires { 0. <=. x_abs } requires { 0. <=. y_abs } requires { r = (x_f ++. y_f) } ensures { abs (to_real r -. (x +. y)) <=. (x_rel +. y_rel +. eps) *. (x_factor +. y_factor) +. ((1. +. eps +. y_rel) *. x_abs +. (1. +. eps +. x_rel) *. y_abs) } = let ghost delta = abs (to_real (x_f ++. y_f) -. (to_real x_f +. to_real y_f)) in assert { 0. <=. x_rel /\ 0. <=. y_rel -> delta <=. (eps +. y_rel) *. x_factor +. (eps +. x_rel) *. y_factor +. (x_rel +. eps) *. y_abs +. (y_rel +. eps) *. x_abs by (delta <=. x_factor *. x_rel +. x_abs +. x_factor so x_factor +. x_abs <=. eps *. (y_factor +. y_abs) -> delta <=. (eps +. x_rel) *. y_factor +. (eps +. y_rel) *. x_factor +. (y_rel +. eps) *. x_abs +. (x_rel +. eps) *. y_abs by delta <=. eps *. (y_factor +. y_abs) *. x_rel +. (eps *. (y_factor +. y_abs))) /\ (delta <=. y_factor *. y_rel +. y_abs +. y_factor so abs y_factor +. y_abs <=. eps *. (x_factor +. x_abs) -> delta <=. (eps +. y_rel) *. x_factor +. (eps +. x_rel) *. y_factor +. (x_rel +. eps) *. y_abs +. (y_rel +. eps) *. x_abs by delta <=. eps *. (x_factor +. x_abs) *. y_rel +. (eps *. (x_factor +. x_abs))) /\ ( (eps *. (x_factor +. x_abs) <. abs y_factor +. y_abs /\ eps *. (y_factor +. y_abs) <. abs x_factor +. x_abs) -> (delta <=. (eps +. y_rel) *. x_factor +. (eps +. x_rel) *. y_factor +. (x_rel +. eps) *. y_abs +. (y_rel +. eps) *. x_abs by abs (to_real x_f +. to_real y_f) <=. abs (to_real x_f -. x) +. x_factor +. (abs (to_real y_f -. y) +. y_factor) so x_factor *. x_rel <=. (y_factor +. y_abs) /. eps *. x_rel /\ y_factor *. y_rel <=. (x_factor +. x_abs) /. eps *. y_rel)) } let lemma usub_single_error_propagation (x_f y_f r : usingle) (x x_factor x_rel x_abs y y_factor y_rel y_abs : real) requires { abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs } requires { abs (to_real y_f -. y) <=. y_rel *. y_factor +. y_abs } requires { abs x <=. x_factor } requires { abs y <=. y_factor } requires { 0. <=. x_abs } requires { 0. <=. y_abs } requires { 0. <=. x_rel } requires { 0. <=. y_rel } requires { r = x_f --. y_f } ensures { abs (to_real r -. (x -. y)) <=. (x_rel +. y_rel +. eps) *. (x_factor +. y_factor) +. ((1. +. eps +. y_rel) *. x_abs +. (1. +. eps +. x_rel) *. y_abs) } = uadd_single_error_propagation x_f (--. y_f) r x x_factor x_rel x_abs (-. y) y_factor y_rel y_abs use HelperLemmas let lemma umul_single_error_propagation (x_f y_f r : usingle) (x x_factor x_rel x_abs y y_factor y_rel y_abs : real) requires { abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs } requires { abs (to_real y_f -. y) <=. y_rel *. y_factor +. y_abs } requires { abs x <=. x_factor } requires { abs y <=. y_factor } requires { 0. <=. x_rel } requires { 0. <=. y_rel } requires { 0. <=. x_abs } requires { 0. <=. y_abs } requires { r = x_f **. y_f } ensures { abs (to_real r -. (x *. y)) <=. (eps +. (x_rel +. y_rel +. x_rel *. y_rel) *. (1. +. eps)) *. (x_factor *. y_factor) +. (((y_abs +. y_abs *. x_rel) *. x_factor +. (x_abs +. x_abs *. y_rel) *. y_factor +. x_abs *. y_abs) *. (1. +. eps) +. eta) } = assert { to_real x_f *. to_real y_f -. abs (to_real x_f *. to_real y_f) *. eps -. eta <=. to_real (x_f **. y_f) <=. to_real x_f *. to_real y_f +. abs (to_real x_f *. to_real y_f) *. eps +. eta }; assert { abs (x *. y) <=. x_factor *. y_factor by abs x *. abs y <=. x_factor *. abs y = abs y *. x_factor <=. y_factor *. x_factor }; mult_err_combine (to_real x_f) x x_factor x_rel x_abs (to_real y_f) y y_factor y_rel y_abs use real.ExpLog let lemma log_single_error_propagation (logx_f x_f : usingle) (x_exact x_factor log_rel log_abs x_rel x_abs : real) requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs } requires { abs (to_real logx_f -. log(to_real x_f)) <=. log_rel *. abs (log (to_real x_f)) +. log_abs } requires { 0. <. x_exact <=. x_factor } requires { 0. <. (x_exact -. x_rel *. x_factor -. x_abs) } requires { 0. <=. log_rel } ensures { abs (to_real logx_f -. log (x_exact)) <=. log_rel *. abs (log (x_exact)) +. (-. log (1. -. ((x_rel *. x_factor +. x_abs) /. x_exact)) *. (1. +. log_rel) +. log_abs) } = log_approx_err x_exact (to_real x_f) x_factor x_rel x_abs; assert { abs (log (to_real x_f)) *. log_rel <=. (abs (log (x_exact)) -. log (1.0 -. (((x_rel *. x_factor) +. x_abs) /. x_exact))) *. log_rel } let lemma log2_single_error_propagation (log2x_f x_f : usingle) (x_exact x_factor log_rel log_abs x_rel x_abs : real) requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs } requires { abs (to_real log2x_f -. log2(to_real x_f)) <=. log_rel *. abs (log2 (to_real x_f)) +. log_abs } requires { 0. <. x_exact <=. x_factor } requires { 0. <. (x_exact -. x_rel *. x_factor -. x_abs) } requires { 0. <=. log_rel } ensures { abs (to_real log2x_f -. log2 (x_exact)) <=. log_rel *. abs (log2 (x_exact)) +. (-. log2 (1. -. ((x_rel *. x_factor +. x_abs) /. x_exact)) *. (1. +. log_rel) +. log_abs) } = log2_approx_err x_exact (to_real x_f) x_factor x_rel x_abs; assert { abs (log2 (to_real x_f)) *. log_rel <=. (abs (log2 (x_exact)) -. log2 (1.0 -. (((x_rel *. x_factor) +. x_abs) /. x_exact))) *. log_rel } let lemma log10_single_error_propagation (log10x_f x_f : usingle) (x_exact x_factor log_rel log_abs x_rel x_abs : real) requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs } requires { abs (to_real log10x_f -. log10(to_real x_f)) <=. log_rel *. abs (log10 (to_real x_f)) +. log_abs } requires { 0. <. x_exact <=. x_factor } requires { 0. <. (x_exact -. x_rel *. x_factor -. x_abs) } requires { 0. <=. log_rel } ensures { abs (to_real log10x_f -. log10 (x_exact)) <=. log_rel *. abs (log10 (x_exact)) +. (-. log10 (1. -. ((x_rel *. x_factor +. x_abs) /. x_exact)) *. (1. +. log_rel) +. log_abs) } = log10_approx_err x_exact (to_real x_f) x_factor x_rel x_abs; assert { abs (log10 (to_real x_f)) *. log_rel <=. (abs (log10 (x_exact)) -. log10 (1.0 -. (((x_rel *. x_factor) +. x_abs) /. x_exact))) *. log_rel } let lemma exp_single_error_propagation (expx_f x_f : usingle) (x_exact x_factor exp_rel exp_abs x_rel x_abs : real) requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs } requires { abs (to_real expx_f -. exp(to_real x_f)) <=. exp_rel *. exp (to_real x_f) +. exp_abs } requires { x_exact <=. x_factor } requires { 0. <=. exp_rel <=. 1. } ensures { abs (to_real expx_f -. exp (x_exact)) <=. (exp_rel +. (exp(x_rel *. x_factor +. x_abs) -. 1.) *. (1. +. exp_rel)) *. exp(x_exact) +. exp_abs } = exp_approx_err x_exact (to_real x_f) x_factor x_rel x_abs; assert { exp x_exact *. (1. -. exp_rel) -. exp x_exact *. (exp (x_rel *. x_factor +. x_abs) -. 1.) *. (1. -. exp_rel) -. exp_abs <=. to_real expx_f by (exp x_exact -. exp x_exact *. (exp (x_rel *. x_factor +. x_abs) -. 1.)) *. (1. -. exp_rel) -. exp_abs <=. exp (to_real x_f) *. (1. -. exp_rel) -. exp_abs <=. to_real expx_f }; assert { to_real expx_f <=. (exp(x_exact) +. exp(x_exact)*.(exp(x_rel *. x_factor +. x_abs) -. 1.))*. (1. +. exp_rel) +. exp_abs by to_real expx_f <=. exp(to_real x_f) *. (1. +. exp_rel) +. exp_abs }; use real.Trigonometry let lemma sin_single_error_propagation (sinx_f x_f : usingle) (x_exact x_factor sin_rel sin_abs x_rel x_abs : real) requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs } requires { abs (to_real sinx_f -. sin(to_real x_f)) <=. sin_rel *. abs (sin (to_real x_f)) +. sin_abs } requires { x_exact <=. x_factor } requires { 0. <=. sin_rel } ensures { abs (to_real sinx_f -. sin (x_exact)) <=. sin_rel *. abs(sin(x_exact)) +. (((x_rel *. x_factor +. x_abs) *. (1. +. sin_rel)) +. sin_abs) } = assert { abs (sin (to_real x_f)) *. sin_rel <=. (abs (sin x_exact) +. (x_rel *. x_factor +. x_abs)) *. sin_rel } let lemma cos_single_error_propagation (cosx_f x_f : usingle) (x_exact x_factor cos_rel cos_abs x_rel x_abs : real) requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs } requires { abs (to_real cosx_f -. cos(to_real x_f)) <=. cos_rel *. abs (cos (to_real x_f)) +. cos_abs } requires { x_exact <=. x_factor } requires { 0. <=. cos_rel } ensures { abs (to_real cosx_f -. cos (x_exact)) <=. cos_rel *. abs(cos(x_exact)) +. (((x_rel *. x_factor +. x_abs) *. (1. +. cos_rel)) +. cos_abs) } = assert { abs (cos (to_real x_f)) *. cos_rel <=. (abs (cos x_exact) +. (x_rel *. x_factor +. x_abs)) *. cos_rel } use real.Sum use int.Int use real.FromInt function real_fun (f:int -> usingle) : int -> real = fun i -> to_real (f i) let lemma sum_single_error_propagation (x : usingle) (f : int -> usingle) (f_exact f_factor f_factor' : int -> real) (n:int) (sum_rel sum_abs f_rel f_abs : real) requires { forall i. 0 <= i < n -> abs ((real_fun f) i -. f_exact i) <=. f_rel *. f_factor i +. f_abs } requires { forall i. 0 <= i < n -> f_factor i -. f_rel *. f_factor i -. f_abs <=. f_factor' i <=. f_factor i +. f_rel *. f_factor i +. f_abs } requires { abs (to_real x -. (sum (real_fun f) 0 n)) <=. sum_rel *. (sum f_factor' 0 n) +. sum_abs } requires { 0. <=. sum_rel } requires { 0 <= n } ensures { abs (to_real x -. sum f_exact 0 n) <=. (f_rel +. (sum_rel *. (1. +. f_rel))) *. sum f_factor 0 n +. ((f_abs *. from_int n *.(1. +. sum_rel)) +. sum_abs) } = sum_approx_err f_rel f_abs (real_fun f) f_exact f_factor 0 n; sum_approx_err f_rel f_abs f_factor' f_factor f_factor 0 n; assert { sum_rel *. sum f_factor' 0 n <=. sum_rel *. (sum f_factor 0 n +. ((f_rel *. sum f_factor 0 n) +. (f_abs *. from_int n))) } (* We don't have an error on y_f because in practice we won't have an exact division with an approximate divisor *) let lemma udiv_exact_single_error_propagation (x_f y_f r: usingle) (x x_factor x_rel x_abs : real) requires { abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs } requires { abs x <=. x_factor } requires { 0. <=. x_rel } requires { 0. <=. x_abs } requires { 0. <> to_real y_f } requires { is_exact udiv x_f y_f } requires { r = x_f ///. y_f } ensures { abs (to_real r -. (x /. (to_real y_f))) <=. x_rel *. (x_factor /. abs (to_real y_f)) +. ((x_abs /. abs (to_real y_f)) +. eta) } = let lemma y_f_pos () requires { 0. <. to_real y_f } ensures { abs (to_real r -. (x /. (to_real y_f))) <=. x_rel *. (x_factor /. to_real y_f) +. ((x_abs /. to_real y_f) +. eta) } = div_order_compat (to_real x_f) (x +. x_rel *. x_factor +. x_abs) (to_real y_f); div_order_compat (x -. x_rel *. x_factor -. x_abs) (to_real x_f) (to_real y_f) in let lemma y_f_neg () requires { to_real y_f <. 0. } ensures { abs (to_real r -. (x /. (to_real y_f))) <=. x_rel *. (x_factor /. abs (to_real y_f)) +. ((x_abs /. abs (to_real y_f)) +. eta) } = div_order_compat2 (to_real x_f) (x +. x_rel *. x_factor +. x_abs) (to_real y_f); (* TODO: Prove this somehow *) assert { forall x y. y <> 0.0 -> x /. y <=. abs x /. abs y by abs (x /. y) = abs (x *. inv y) = abs x *. abs (inv y) = abs x *. inv (abs y) = abs x /. abs y }; assert { (x -. x_rel *. x_factor -. x_abs) /. to_real y_f <=. x /. (to_real y_f) +. ((x_rel *. x_factor) +. x_abs) /. abs (to_real y_f) by (-. x_rel *. x_factor -. x_abs) /. to_real y_f <=. (x_rel *. x_factor +. x_abs) /. abs (to_real y_f) }; div_order_compat2 (x -. x_rel *. x_factor -. x_abs) (to_real x_f) (to_real y_f); in () end module UDoubleLemmas use real.RealInfix use real.FromInt use real.Abs use UDouble
let lemma uadd_double_error_propagation (x_f y_f r : udouble) (x x_factor x_rel x_abs y y_factor y_rel y_abs : real) requires { abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs } requires { abs (to_real y_f -. y) <=. y_rel *. y_factor +. y_abs } requires { abs x <=. x_factor } requires { abs y <=. y_factor } (* TODO: Use (0 <=. x_rel \/ (x_factor = 0 /\ x_abs = 0)), same for y. *) requires { 0. <=. x_rel } requires { 0. <=. y_rel } requires { 0. <=. x_abs } requires { 0. <=. y_abs } requires { r = x_f ++. y_f } ensures { abs (to_real r -. (x +. y)) <=. (x_rel +. y_rel +. eps) *. (x_factor +. y_factor) +. ((1. +. eps +. y_rel) *. x_abs +. (1. +. eps +. x_rel) *. y_abs) } = let ghost delta = abs (to_real (x_f ++. y_f) -. (to_real x_f +. to_real y_f)) in assert { 0. <=. x_rel /\ 0. <=. y_rel -> delta <=. (eps +. y_rel) *. x_factor +. (eps +. x_rel) *. y_factor +. (x_rel +. eps) *. y_abs +. (y_rel +. eps) *. x_abs by (delta <=. x_factor *. x_rel +. x_abs +. x_factor so x_factor +. x_abs <=. eps *. (y_factor +. y_abs) -> delta <=. (eps +. x_rel) *. y_factor +. (eps +. y_rel) *. x_factor +. (y_rel +. eps) *. x_abs +. (x_rel +. eps) *. y_abs by delta <=. eps *. (y_factor +. y_abs) *. x_rel +. (eps *. (y_factor +. y_abs))) /\ (delta <=. y_factor *. y_rel +. y_abs +. y_factor so abs y_factor +. y_abs <=. eps *. (x_factor +. x_abs) -> delta <=. (eps +. y_rel) *. x_factor +. (eps +. x_rel) *. y_factor +. (x_rel +. eps) *. y_abs +. (y_rel +. eps) *. x_abs by delta <=. eps *. (x_factor +. x_abs) *. y_rel +. (eps *. (x_factor +. x_abs))) /\ ( (eps *. (x_factor +. x_abs) <. abs y_factor +. y_abs /\ eps *. (y_factor +. y_abs) <. abs x_factor +. x_abs) -> (delta <=. (eps +. y_rel) *. x_factor +. (eps +. x_rel) *. y_factor +. (x_rel +. eps) *. y_abs +. (y_rel +. eps) *. x_abs by abs (to_real x_f +. to_real y_f) <=. abs (to_real x_f -. x) +. x_factor +. (abs (to_real y_f -. y) +. y_factor) so x_factor *. x_rel <=. (y_factor +. y_abs) /. eps *. x_rel /\ y_factor *. y_rel <=. (x_factor +. x_abs) /. eps *. y_rel)) } let lemma usub_double_error_propagation (x_f y_f r : udouble) (x x_factor x_rel x_abs y y_factor y_rel y_abs : real) requires { abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs } requires { abs (to_real y_f -. y) <=. y_rel *. y_factor +. y_abs } requires { abs x <=. x_factor } requires { abs y <=. y_factor } requires { 0. <=. x_abs } requires { 0. <=. y_abs } requires { 0. <=. x_rel } requires { 0. <=. y_rel } requires { r = x_f --. y_f } ensures { abs (to_real r -. (x -. y)) <=. (x_rel +. y_rel +. eps) *. (x_factor +. y_factor) +. ((1. +. eps +. y_rel) *. x_abs +. (1. +. eps +. x_rel) *. y_abs) } = uadd_double_error_propagation x_f (--. y_f) r x x_factor x_rel x_abs (-. y) y_factor y_rel y_abs use HelperLemmas let lemma umul_double_error_propagation (x_f y_f r : udouble) (x x_factor x_rel x_abs y y_factor y_rel y_abs : real) requires { abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs } requires { abs (to_real y_f -. y) <=. y_rel *. y_factor +. y_abs } requires { abs x <=. x_factor } requires { abs y <=. y_factor } requires { 0. <=. x_rel } requires { 0. <=. y_rel } requires { 0. <=. x_abs } requires { 0. <=. y_abs } requires { r = x_f **. y_f } ensures { abs (to_real r -. (x *. y)) <=. (eps +. (x_rel +. y_rel +. x_rel *. y_rel) *. (1. +. eps)) *. (x_factor *. y_factor) +. (((y_abs +. y_abs *. x_rel) *. x_factor +. (x_abs +. x_abs *. y_rel) *. y_factor +. x_abs *. y_abs) *. (1. +. eps) +. eta) } = assert { to_real x_f *. to_real y_f -. abs (to_real x_f *. to_real y_f) *. eps -. eta <=. to_real (x_f **. y_f) <=. to_real x_f *. to_real y_f +. abs (to_real x_f *. to_real y_f) *. eps +. eta }; assert { abs (x *. y) <=. x_factor *. y_factor by abs x *. abs y <=. x_factor *. abs y = abs y *. x_factor <=. y_factor *. x_factor }; mult_err_combine (to_real x_f) x x_factor x_rel x_abs (to_real y_f) y y_factor y_rel y_abs use real.ExpLog let lemma log_double_error_propagation (logx_f x_f : udouble) (x_exact x_factor log_rel log_abs x_rel x_abs : real) requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs } requires { abs (to_real logx_f -. log(to_real x_f)) <=. log_rel *. abs (log (to_real x_f)) +. log_abs } requires { 0. <. x_exact <=. x_factor } requires { 0. <. (x_exact -. x_rel *. x_factor -. x_abs) } requires { 0. <=. log_rel } ensures { abs (to_real logx_f -. log (x_exact)) <=. log_rel *. abs (log (x_exact)) +. (-. log (1. -. ((x_rel *. x_factor +. x_abs) /. x_exact)) *. (1. +. log_rel) +. log_abs) } = log_approx_err x_exact (to_real x_f) x_factor x_rel x_abs; assert { abs (log (to_real x_f)) *. log_rel <=. (abs (log (x_exact)) -. log (1.0 -. (((x_rel *. x_factor) +. x_abs) /. x_exact))) *. log_rel } let lemma log2_double_error_propagation (log2x_f x_f : udouble) (x_exact x_factor log_rel log_abs x_rel x_abs : real) requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs } requires { abs (to_real log2x_f -. log2(to_real x_f)) <=. log_rel *. abs (log2 (to_real x_f)) +. log_abs } requires { 0. <. x_exact <=. x_factor } requires { 0. <. (x_exact -. x_rel *. x_factor -. x_abs) } requires { 0. <=. log_rel } ensures { abs (to_real log2x_f -. log2 (x_exact)) <=. log_rel *. abs (log2 (x_exact)) +. (-. log2 (1. -. ((x_rel *. x_factor +. x_abs) /. x_exact)) *. (1. +. log_rel) +. log_abs) } = log2_approx_err x_exact (to_real x_f) x_factor x_rel x_abs; assert { abs (log2 (to_real x_f)) *. log_rel <=. (abs (log2 (x_exact)) -. log2 (1.0 -. (((x_rel *. x_factor) +. x_abs) /. x_exact))) *. log_rel } let lemma log10_double_error_propagation (log10x_f x_f : udouble) (x_exact x_factor log_rel log_abs x_rel x_abs : real) requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs } requires { abs (to_real log10x_f -. log10(to_real x_f)) <=. log_rel *. abs (log10 (to_real x_f)) +. log_abs } requires { 0. <. x_exact <=. x_factor } requires { 0. <. (x_exact -. x_rel *. x_factor -. x_abs) } requires { 0. <=. log_rel } ensures { abs (to_real log10x_f -. log10 (x_exact)) <=. log_rel *. abs (log10 (x_exact)) +. (-. log10 (1. -. ((x_rel *. x_factor +. x_abs) /. x_exact)) *. (1. +. log_rel) +. log_abs) } = log10_approx_err x_exact (to_real x_f) x_factor x_rel x_abs; assert { abs (log10 (to_real x_f)) *. log_rel <=. (abs (log10 (x_exact)) -. log10 (1.0 -. (((x_rel *. x_factor) +. x_abs) /. x_exact))) *. log_rel } let lemma exp_double_error_propagation (expx_f x_f : udouble) (x_exact x_factor exp_rel exp_abs x_rel x_abs : real) requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs } requires { abs (to_real expx_f -. exp(to_real x_f)) <=. exp_rel *. exp (to_real x_f) +. exp_abs } requires { x_exact <=. x_factor } requires { 0. <=. exp_rel <=. 1. } ensures { abs (to_real expx_f -. exp (x_exact)) <=. (exp_rel +. (exp(x_rel *. x_factor +. x_abs) -. 1.) *. (1. +. exp_rel)) *. exp(x_exact) +. exp_abs } = exp_approx_err x_exact (to_real x_f) x_factor x_rel x_abs; assert { exp x_exact *. (1. -. exp_rel) -. exp x_exact *. (exp (x_rel *. x_factor +. x_abs) -. 1.) *. (1. -. exp_rel) -. exp_abs <=. to_real expx_f by (exp x_exact -. exp x_exact *. (exp (x_rel *. x_factor +. x_abs) -. 1.)) *. (1. -. exp_rel) -. exp_abs <=. exp (to_real x_f) *. (1. -. exp_rel) -. exp_abs <=. to_real expx_f }; assert { to_real expx_f <=. (exp(x_exact) +. exp(x_exact)*.(exp(x_rel *. x_factor +. x_abs) -. 1.))*. (1. +. exp_rel) +. exp_abs by to_real expx_f <=. exp(to_real x_f) *. (1. +. exp_rel) +. exp_abs }; use real.Trigonometry let lemma sin_double_error_propagation (sinx_f x_f : udouble) (x_exact x_factor sin_rel sin_abs x_rel x_abs : real) requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs } requires { abs (to_real sinx_f -. sin(to_real x_f)) <=. sin_rel *. abs (sin (to_real x_f)) +. sin_abs } requires { x_exact <=. x_factor } requires { 0. <=. sin_rel } ensures { abs (to_real sinx_f -. sin (x_exact)) <=. sin_rel *. abs(sin(x_exact)) +. (((x_rel *. x_factor +. x_abs) *. (1. +. sin_rel)) +. sin_abs) } = assert { abs (sin (to_real x_f)) *. sin_rel <=. (abs (sin x_exact) +. (x_rel *. x_factor +. x_abs)) *. sin_rel } let lemma cos_double_error_propagation (cosx_f x_f : udouble) (x_exact x_factor cos_rel cos_abs x_rel x_abs : real) requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs } requires { abs (to_real cosx_f -. cos(to_real x_f)) <=. cos_rel *. abs (cos (to_real x_f)) +. cos_abs } requires { x_exact <=. x_factor } requires { 0. <=. cos_rel } ensures { abs (to_real cosx_f -. cos (x_exact)) <=. cos_rel *. abs(cos(x_exact)) +. (((x_rel *. x_factor +. x_abs) *. (1. +. cos_rel)) +. cos_abs) } = assert { abs (cos (to_real x_f)) *. cos_rel <=. (abs (cos x_exact) +. (x_rel *. x_factor +. x_abs)) *. cos_rel } use real.Sum use int.Int use real.FromInt function real_fun (f:int -> udouble) : int -> real = fun i -> to_real (f i) let lemma sum_double_error_propagation (x : udouble) (f : int -> udouble) (f_exact f_factor f_factor' : int -> real) (n:int) (sum_rel sum_abs f_rel f_abs : real) requires { forall i. 0 <= i < n -> abs ((real_fun f) i -. f_exact i) <=. f_rel *. f_factor i +. f_abs } requires { forall i. 0 <= i < n -> f_factor i -. f_rel *. f_factor i -. f_abs <=. f_factor' i <=. f_factor i +. f_rel *. f_factor i +. f_abs } requires { abs (to_real x -. (sum (real_fun f) 0 n)) <=. sum_rel *. (sum f_factor' 0 n) +. sum_abs } requires { 0. <=. sum_rel } requires { 0 <= n } ensures { abs (to_real x -. sum f_exact 0 n) <=. (f_rel +. (sum_rel *. (1. +. f_rel))) *. sum f_factor 0 n +. ((f_abs *. from_int n *.(1. +. sum_rel)) +. sum_abs) } = sum_approx_err f_rel f_abs (real_fun f) f_exact f_factor 0 n; sum_approx_err f_rel f_abs f_factor' f_factor f_factor 0 n; assert { sum_rel *. sum f_factor' 0 n <=. sum_rel *. (sum f_factor 0 n +. ((f_rel *. sum f_factor 0 n) +. (f_abs *. from_int n))) } (* We don't have an error on y_f because in practice we won't have an exact division with an approximate divisor *) let lemma udiv_exact_single_error_propagation (x_f y_f r: udouble) (x x_factor x_rel x_abs : real) requires { abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs } requires { abs x <=. x_factor } requires { 0. <=. x_rel } requires { 0. <=. x_abs } requires { 0. <> to_real y_f } requires { is_exact udiv x_f y_f } requires { r = x_f ///. y_f } ensures { abs (to_real r -. (x /. (to_real y_f))) <=. x_rel *. (x_factor /. abs (to_real y_f)) +. ((x_abs /. abs (to_real y_f)) +. eta) } = let lemma y_f_pos () requires { 0. <. to_real y_f } ensures { abs (to_real r -. (x /. (to_real y_f))) <=. x_rel *. (x_factor /. to_real y_f) +. ((x_abs /. to_real y_f) +. eta) } = div_order_compat (to_real x_f) (x +. x_rel *. x_factor +. x_abs) (to_real y_f); div_order_compat (x -. x_rel *. x_factor -. x_abs) (to_real x_f) (to_real y_f) in let lemma y_f_neg () requires { to_real y_f <. 0. } ensures { abs (to_real r -. (x /. (to_real y_f))) <=. x_rel *. (x_factor /. abs (to_real y_f)) +. ((x_abs /. abs (to_real y_f)) +. eta) } = div_order_compat2 (to_real x_f) (x +. x_rel *. x_factor +. x_abs) (to_real y_f); (* TODO: Prove this somehow *) assert { forall x y. x /. y <=. abs x /. abs y }; assert { (x -. x_rel *. x_factor -. x_abs) /. to_real y_f <=. x /. (to_real y_f) +. ((x_rel *. x_factor) +. x_abs) /. abs (to_real y_f) by (-. x_rel *. x_factor -. x_abs) /. to_real y_f <=. (x_rel *. x_factor +. x_abs) /. abs (to_real y_f) }; div_order_compat2 (x -. x_rel *. x_factor -. x_abs) (to_real x_f) (to_real y_f); in () end
Generated by why3doc 1.8.0