module BigInt:sig..end
Nums or ZArithtype t
val compare : t -> t -> intval zero : t
val one : t
val of_int : int -> tval succ : t -> t
val pred : t -> t
val add_int : int -> t -> t
val mul_int : int -> t -> t
val add : t -> t -> t
val sub : t -> t -> t
val mul : t -> t -> t
val minus : t -> t
val sign : t -> intval eq : t -> t -> bool
val lt : t -> t -> bool
val gt : t -> t -> bool
val le : t -> t -> bool
val ge : t -> t -> boolBy convention, the modulo is always non-negative. This implies that division rounds down when divisor is positive, and rounds up when divisor is negative.
val euclidean_div_mod : t -> t -> t * t
val euclidean_div : t -> t -> t
val euclidean_mod : t -> t -> tDivision rounds toward zero, and thus mod x y has the same sign as x.
val computer_div_mod : t -> t -> t * t
val computer_div : t -> t -> t
val computer_mod : t -> t -> tval min : t -> t -> t
val max : t -> t -> t
val abs : t -> tval num_digits : t -> intSecond argument must be non-negative.
val pow_int_pos : int -> int -> t
val pow_int_pos_bigint : int -> t -> tval of_string : string -> t
val to_string : t -> string
val to_int : t -> int
val is_int : t -> bool