Why3 Standard Library index
module Parity use int.Int predicate even (n: int) = exists k: int. n = 2 * k predicate odd (n: int) = exists k: int. n = 2 * k + 1 lemma even_or_odd: forall n: int. even n \/ odd n lemma even_not_odd: forall n: int. even n -> not (odd n) lemma odd_not_even: forall n: int. odd n -> not (even n) lemma even_odd: forall n: int. even n -> odd (n + 1) lemma odd_even: forall n: int. odd n -> even (n + 1) lemma even_even: forall n: int. even n -> even (n + 2) lemma odd_odd: forall n: int. odd n -> odd (n + 2) lemma even_2k: forall k: int. even (2 * k) lemma odd_2k1: forall k: int. odd (2 * k + 1) use int.ComputerDivision lemma even_mod2 : forall n:int. even n <-> mod n 2 = 0 end
module Divisibility use export int.Int use int.ComputerDivision let predicate divides (d:int) (n:int) ensures { result <-> exists q:int. n = q * d } = if d = 0 then n = 0 else mod n d = 0 lemma divides_refl: forall n:int. divides n n lemma divides_1_n : forall n:int. divides 1 n lemma divides_0 : forall n:int. divides n 0 lemma divides_left : forall a b c: int. divides a b -> divides (c*a) (c*b) lemma divides_right: forall a b c: int. divides a b -> divides (a*c) (b*c) lemma divides_oppr: forall a b: int. divides a b -> divides a (-b) lemma divides_oppl: forall a b: int. divides a b -> divides (-a) b lemma divides_oppr_rev: forall a b: int. divides (-a) b -> divides a b lemma divides_oppl_rev: forall a b: int. divides a (-b) -> divides a b lemma divides_plusr: forall a b c: int. divides a b -> divides a c -> divides a (b + c) lemma divides_minusr: forall a b c: int. divides a b -> divides a c -> divides a (b - c) lemma divides_multl: forall a b c: int. divides a b -> divides a (c * b) lemma divides_multr: forall a b c: int. divides a b -> divides a (b * c) lemma divides_factorl: forall a b: int. divides a (b * a) lemma divides_factorr: forall a b: int. divides a (a * b) lemma divides_n_1: forall n: int. divides n 1 -> n = 1 \/ n = -1 lemma divides_antisym: forall a b: int. divides a b -> divides b a -> a = b \/ a = -b lemma divides_trans: forall a b c: int. divides a b -> divides b c -> divides a c use int.Abs lemma divides_bounds: forall a b: int. divides a b -> b <> 0 -> abs a <= abs b use int.EuclideanDivision as ED lemma mod_divides_euclidean: forall a b: int. b <> 0 -> ED.mod a b = 0 -> divides b a lemma divides_mod_euclidean: forall a b: int. b <> 0 -> divides b a -> ED.mod a b = 0 use int.ComputerDivision as CD lemma mod_divides_computer: forall a b: int. b <> 0 -> CD.mod a b = 0 -> divides b a lemma divides_mod_computer: forall a b: int. b <> 0 -> divides b a -> CD.mod a b = 0 use Parity lemma even_divides: forall a: int. even a <-> divides 2 a lemma odd_divides: forall a: int. odd a <-> not (divides 2 a) end
module Gcd use export int.Int use Divisibility function gcd int int : int axiom gcd_nonneg: forall a b: int. 0 <= gcd a b axiom gcd_def1 : forall a b: int. divides (gcd a b) a axiom gcd_def2 : forall a b: int. divides (gcd a b) b axiom gcd_def3 : forall a b x: int. divides x a -> divides x b -> divides x (gcd a b) axiom gcd_unique: forall a b d: int. 0 <= d -> divides d a -> divides d b -> (forall x: int. divides x a -> divides x b -> divides x d) -> d = gcd a b (* gcd is associative commutative *) clone algebra.AC with type t = int, function op = gcd lemma gcd_0_pos: forall a: int. 0 <= a -> gcd a 0 = a lemma gcd_0_neg: forall a: int. a < 0 -> gcd a 0 = -a lemma gcd_opp: forall a b: int. gcd a b = gcd (-a) b lemma gcd_euclid: forall a b q: int. gcd a b = gcd a (b - q * a) use int.ComputerDivision as CD lemma Gcd_computer_mod: forall a b: int [gcd b (CD.mod a b)]. b <> 0 -> gcd b (CD.mod a b) = gcd a b use int.EuclideanDivision as ED lemma Gcd_euclidean_mod: forall a b: int [gcd b (ED.mod a b)]. b <> 0 -> gcd b (ED.mod a b) = gcd a b lemma gcd_mult: forall a b c: int. 0 <= c -> gcd (c * a) (c * b) = c * gcd a b end
module Prime use export int.Int use Divisibility predicate prime (p: int) = 2 <= p /\ forall n: int. 1 < n < p -> not (divides n p) lemma not_prime_1: not (prime 1) lemma prime_2 : prime 2 lemma prime_3 : prime 3 lemma prime_divisors: forall p: int. prime p -> forall d: int. divides d p -> d = 1 \/ d = -1 \/ d = p \/ d = -p lemma small_divisors: forall p: int. 2 <= p -> (forall d: int. 2 <= d -> prime d -> 1 < d*d <= p -> not (divides d p)) -> prime p use Parity lemma even_prime: forall p: int. prime p -> even p -> p = 2 lemma odd_prime: forall p: int. prime p -> p >= 3 -> odd p end
module Coprime use export int.Int use Divisibility use Gcd predicate coprime (a b: int) = gcd a b = 1 use Prime lemma prime_coprime: forall p: int. prime p <-> 2 <= p && forall n:int. 1 <= n < p -> coprime n p lemma Gauss: forall a b c:int. divides a (b*c) /\ coprime a b -> divides a c lemma Euclid: forall p a b:int. prime p /\ divides p (a*b) -> divides p a \/ divides p b lemma gcd_coprime: forall a b c. coprime a b -> gcd a (b*c) = gcd a c end
Generated by why3doc 1.8.0